Stromsignal hinterlässt in Manganitkristall magnetische Spur

Optische und kristallographische Experimente belegen erstmals, dass man magnetische Signale durch elektrische Felder erzeugen kann. Für die jetzt veröffentlichten Experimente („Magnetic phase control by an electric field“, Nature, 29. 7. 2004, 430 / 541-544) wurden Manganitkristalle (HoMnO3) mit hexagonaler Atomstruktur untersucht.

Millionenfach dienen magnetische Muster auf Computerfestplatten zur Speicherung von Daten. Die magnetischen Informationscodes werden durch externe Magnetfelder geschrieben, die bei Festplatten in schneller Folge von sehr leistungsfähig miniaturisierten Schreib-Leseköpfen erzeugt werden. Dass es auch möglich ist, nachweisbare und bleibende magnetische Spuren in speziellen Kristallen durch reine Stromsignale zu erzeugen, konnte jetzt erstmals von Wissenschaftlern der Universität Tübingen und der Berliner Forschungszentren Max-Born-Institut und Hahn-Meitner-Institut nachgewiesen werden. Weil sich hierdurch neue Ansätze für die Datenspeicherung durch magnetoelektrische Effekte eröffnen, ist der Gegenstand der Untersuchung für die Informations-Technologie von großem Interesse. 

Für die jetzt veröffentlichten Experimente („Magnetic phase control by an electric field“, Nature, 29. 7. 2004, 430 / 541-544) wurden Manganitkristalle (HoMnO3) mit hexagonaler Atomstruktur unter Stickstoffkühlung untersucht. In laseroptischen Experimenten konnte dabei der Einfluss eines elektrischen Feldes auf die magnetische Ordnung eindeutig nachgewiesen werden. Weiterführende Neutronen-Streuexperimente in Berlin zeigten, dass die elektrischen Felder Änderungen der Abstände von Atomen bewirken und so zur Ausbildung bleibender ferromagnetischer Signale führen. 

Der Einfluss des elektrischen Feldes auf die magnetische Ordnung zeigt sich in optischen Messungen durch die Erzeugung einer „optischen zweiten Harmonischen“, mit der man die Verdopplung der Frequenz einer Lichtwelle in einem Kristall bezeichnet. Zudem wurde eine für ferromagnetisches Schalten typische Änderung der Schwingungsrichtung von Licht beim Anlegen des elektrischen Feldes beobachtet (Thomas Lottermoser, Manfred Fiebig Max-Born-Institut, Berlin). 

(Thomas Lonkai, Uwe Amann und Jörg Ihringer)Für die kristallographischen Streuexperimente mit Neutronen wurde ein Diffraktometer am Forschungsrektor im Hahn-Meitner-Institut Berlin eingesetzt (Thomas Lonkai und Dieter Hohlwein). Wie die mit hohem Aufwand und großer Exaktheit durchgeführten Messungen zeigten, verursacht die Wechselwirkung zwischen elektrischem Feld und magnetischer Ordnung feldabhängige Änderungen im Kristallgitter mit Auswirkung auf die magnetischen Austauschpfade, also feldabhängigen Änderungen der Atom-Atomabstände der magnetischen Ionen innerhalb des Kristalls. Zum Nachweis dieser mikroskopischen Effekte wurden an der Universität Tübingen neuartige Auswertungsstrategien entwickelt.

Seit mehr als zwei Jahrzehnten arbeiten das Berliner Zentrum für Neutronenstreuung BENSC im Hahn-Meitner-Institut und die Universität Tübingen erfolgreich zusammen. Im Rahmen eines Kooperationsvertrages betreibt Tübingen, anfangs unter der Leitung von Wolfram Prandl, derzeit unter der Leitung von Jörg Ihringer, in Berlin das weltweit einzigartige Flat-cone Diffraktometer E2, und stellt ebenfalls die Experimentverantwortlichen – vom Erbauer des Geräts, Dieter Hohlwein bis zu den jetzigen Experimentverantwortlichen Jens-Uwe Hoffmann und Thomas Lonkai. Das Flat-cone Diffraktometer zeichnet sich unter anderem durch außerordentlich niedrige Untergrundsignale und eine exzellente Neutronenausbeute aus. Für die Zukunft ist ein Ausbau mit Flächendetektoren geplant, verbunden mit einer neuen Generation der Datenauswertung, welche auch Analysen sehr komplizierter monokristalliner Strukturen ermöglicht. Projektmittel hierfür wurden jüngst vom Bundesministerium für Bildung und Forschung bewilligt.

  • Link kopieren

Das könnte Sie auch interessieren

  • Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Science Highlight
    05.11.2025
    Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Noch immer ist die Hochtemperatursupraleitung nicht vollständig verstanden. Nun hat ein internationales Forschungsteam an BESSY II die Energie von Ladungsträgerpaaren in undotiertem La₂CuO₄ vermessen. Die Messungen zeigten, dass die Wechselwirkungsenergien in den potenziell supraleitenden Kupferoxid-Schichten deutlich geringer sind als in den isolierenden Lanthanoxid-Schichten. Die Ergebnisse tragen zum besseren Verständnis der Hochtemperatur-Supraleitung bei und könnten auch für die Erforschung anderer funktionaler Materialien relevant sein.
  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.
  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in Phosphor nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.