Stromsignal hinterlässt in Manganitkristall magnetische Spur

Optische und kristallographische Experimente belegen erstmals, dass man magnetische Signale durch elektrische Felder erzeugen kann. Für die jetzt veröffentlichten Experimente („Magnetic phase control by an electric field“, Nature, 29. 7. 2004, 430 / 541-544) wurden Manganitkristalle (HoMnO3) mit hexagonaler Atomstruktur untersucht.

Millionenfach dienen magnetische Muster auf Computerfestplatten zur Speicherung von Daten. Die magnetischen Informationscodes werden durch externe Magnetfelder geschrieben, die bei Festplatten in schneller Folge von sehr leistungsfähig miniaturisierten Schreib-Leseköpfen erzeugt werden. Dass es auch möglich ist, nachweisbare und bleibende magnetische Spuren in speziellen Kristallen durch reine Stromsignale zu erzeugen, konnte jetzt erstmals von Wissenschaftlern der Universität Tübingen und der Berliner Forschungszentren Max-Born-Institut und Hahn-Meitner-Institut nachgewiesen werden. Weil sich hierdurch neue Ansätze für die Datenspeicherung durch magnetoelektrische Effekte eröffnen, ist der Gegenstand der Untersuchung für die Informations-Technologie von großem Interesse. 

Für die jetzt veröffentlichten Experimente („Magnetic phase control by an electric field“, Nature, 29. 7. 2004, 430 / 541-544) wurden Manganitkristalle (HoMnO3) mit hexagonaler Atomstruktur unter Stickstoffkühlung untersucht. In laseroptischen Experimenten konnte dabei der Einfluss eines elektrischen Feldes auf die magnetische Ordnung eindeutig nachgewiesen werden. Weiterführende Neutronen-Streuexperimente in Berlin zeigten, dass die elektrischen Felder Änderungen der Abstände von Atomen bewirken und so zur Ausbildung bleibender ferromagnetischer Signale führen. 

Der Einfluss des elektrischen Feldes auf die magnetische Ordnung zeigt sich in optischen Messungen durch die Erzeugung einer „optischen zweiten Harmonischen“, mit der man die Verdopplung der Frequenz einer Lichtwelle in einem Kristall bezeichnet. Zudem wurde eine für ferromagnetisches Schalten typische Änderung der Schwingungsrichtung von Licht beim Anlegen des elektrischen Feldes beobachtet (Thomas Lottermoser, Manfred Fiebig Max-Born-Institut, Berlin). 

(Thomas Lonkai, Uwe Amann und Jörg Ihringer)Für die kristallographischen Streuexperimente mit Neutronen wurde ein Diffraktometer am Forschungsrektor im Hahn-Meitner-Institut Berlin eingesetzt (Thomas Lonkai und Dieter Hohlwein). Wie die mit hohem Aufwand und großer Exaktheit durchgeführten Messungen zeigten, verursacht die Wechselwirkung zwischen elektrischem Feld und magnetischer Ordnung feldabhängige Änderungen im Kristallgitter mit Auswirkung auf die magnetischen Austauschpfade, also feldabhängigen Änderungen der Atom-Atomabstände der magnetischen Ionen innerhalb des Kristalls. Zum Nachweis dieser mikroskopischen Effekte wurden an der Universität Tübingen neuartige Auswertungsstrategien entwickelt.

Seit mehr als zwei Jahrzehnten arbeiten das Berliner Zentrum für Neutronenstreuung BENSC im Hahn-Meitner-Institut und die Universität Tübingen erfolgreich zusammen. Im Rahmen eines Kooperationsvertrages betreibt Tübingen, anfangs unter der Leitung von Wolfram Prandl, derzeit unter der Leitung von Jörg Ihringer, in Berlin das weltweit einzigartige Flat-cone Diffraktometer E2, und stellt ebenfalls die Experimentverantwortlichen – vom Erbauer des Geräts, Dieter Hohlwein bis zu den jetzigen Experimentverantwortlichen Jens-Uwe Hoffmann und Thomas Lonkai. Das Flat-cone Diffraktometer zeichnet sich unter anderem durch außerordentlich niedrige Untergrundsignale und eine exzellente Neutronenausbeute aus. Für die Zukunft ist ein Ausbau mit Flächendetektoren geplant, verbunden mit einer neuen Generation der Datenauswertung, welche auch Analysen sehr komplizierter monokristalliner Strukturen ermöglicht. Projektmittel hierfür wurden jüngst vom Bundesministerium für Bildung und Forschung bewilligt.

  • Link kopieren

Das könnte Sie auch interessieren

  • Verleihung des Technologietransfer-Preises 2025
    Nachricht
    07.10.2025
    Verleihung des Technologietransfer-Preises 2025
    Die Verleihung des Technologietransfer-Preises wird am 13. Oktober um 14 Uhr im Hörsaal des BESSY-II-Gebäudes in Adlershof stattfinden.
  • Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Science Highlight
    01.10.2025
    Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Forschende haben erstmals die tatsächlichen Eigenschaften einzelner MXene-Flocken gemessen – einem spannenden neuen Nanomaterial mit Potenzial für bessere Batterien, flexible Elektronik und Geräte für saubere Energie. Mithilfe einer neuartigen lichtbasierten Technik – der spektroskopischen Mikroellipsometrie – haben sie herausgefunden, wie sich MXene auf der Ebene einzelner Flocken verhalten und dabei Veränderungen in der Leitfähigkeit und der optischen Reaktion aufgedeckt, die zuvor bei der Untersuchung gestapelter Schichten verborgen geblieben waren. Dieser Durchbruch liefert grundlegendes Wissen und Werkzeuge für die Entwicklung intelligenterer und effizienterer Technologien auf Basis von MXenen. 
  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.