Maschinelles Lernen hilft, Photonik-Anwendungen zu optimieren

Die Computersimulation zeigt, wie sich nach Anregung mit einem Laser in der Siliziumschicht mit Lochmuster das elektromagnetische Feld verteilt. Hier bilden sich Streifen mit lokalen Feldmaxima aus, so dass Quantenpunkte besonders stark leuchten. Bild. C. Barth/HZB

Die Computersimulation zeigt, wie sich nach Anregung mit einem Laser in der Siliziumschicht mit Lochmuster das elektromagnetische Feld verteilt. Hier bilden sich Streifen mit lokalen Feldmaxima aus, so dass Quantenpunkte besonders stark leuchten. Bild. C. Barth/HZB

Photonische Nanostrukturen erhöhen nicht nur die Effizienz von Solarzellen, sondern verbessern auch die Wirksamkeit von optischen Sensoren, die zum Beispiel als Krebsmarker verwendet werden. Mit Computersimulationen und dem Einsatz von maschinellem Lernen hat nun ein Team am HZB gezeigt, wie sich das Design solcher Nanostrukturen gezielt optimieren lässt. Die Ergebnisse sind in Communications Physics publiziert.

Mit Nanostrukturen lässt sich die Empfindlichkeit von optischen Sensoren enorm steigern – sofern die Geometrie bestimmte Bedingungen erfüllt und zur Wellenlänge des eingestrahlten Lichts passt. Denn das elektromagnetische Feld des Lichts kann durch die Nanostruktur lokal extrem verstärkt oder abgeschwächt werden. Am HZB arbeitet die Nachwuchsgruppe Nano-SIPPE um Prof. Dr. Christiane Becker daran, solche Nanostrukturen gezielt zu entwickeln. Ein wichtiges Werkzeug dabei sind Computersimulationen. Dr. Carlo Barth aus Beckers Team hat nun mit Einsatz von maschinellem Lernen die wichtigsten Muster der Feldverteilung in einer Nanostruktur identifiziert und damit auch erstmals sehr gut die experimentellen Befunde erklärt.

Nanostrukturen: Licht bringt Quantenpunkte zum Leuchten

Die in dieser Arbeit betrachteten photonischen Nanostrukturen bestehen aus einer Siliziumschicht mit einem regelmäßigen Lochmuster, die mit Quantenpunkten aus Bleisulfid beschichtet ist. Angeregt mit einem Laser leuchten die Quantenpunkte durch die lokalen Felderhöhungen wesentlich stärker als auf einer unstrukturierten Oberfläche. Damit lässt sich experimentell zeigen, wie das Laserlicht mit der Nanostruktur wechselwirkt.

Zehn verschiedene Muster

Um nun systematisch zu erfassen, was passiert, wenn sich einzelne Parameter der Nanostruktur verändern, berechnete Barth unter Verwendung einer am Zuse-Institut Berlin entwickelten Software für jeden Parametersatz die dreidimensionale Feldverteilung. Diese enormen Datenmengen ließ Barth dann von weiteren Computerprogrammen analysieren, die auf Methoden des maschinellen Lernens basieren. „Der Rechner hat die rund 45.000 Datensätze durchforstet und in etwa zehn unterschiedliche Muster gruppiert“, erklärt Barth. Schließlich gelang es Barth und Becker unter anderen drei Grundmuster herauszukristallisieren, bei denen in verschiedenen spezifischen Bereichen der Nanolöcher die Felder verstärkt sind.

Sensoren für einzelne Moleküle, zum Beispiel Krebsmarker

Dies erlaubt nun die Optimierung photonischer Kristallmembranen für praktisch jede Anwendung, die auf Anregungsverstärkung basiert. Denn je nach Anwendung lagern sich manche Biomoleküle zum Beispiel bevorzugt entlang der Lochränder an, andere eher auf den Plateaus zwischen den Löchern. Mit der richtigen Geometrie und der passenden Anregung durch Licht ließe sich dann die maximale Feldverstärkung exakt an den Anlagerungsplätzen der gesuchten Moleküle erzeugen. Damit ließe sich die Sensitivität von optischen Sensoren, beispielsweise für Krebsmarker, bis auf das Niveau von Einzelmolekülen erhöhen.

Der verwendete Code und auch die Daten stehen frei zum Download zur Verfügung.

Die Studie ist publiziert in Communications Physics (2018). “Machine learning classification for field distributions of photonic modes”, Carlo Barth & Christiane Becker

DOI:10.1038/s42005-018-0060-1

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.