Graphen auf dem Weg zur Supraleitung

Die Messungen zeigen beim doppellagigem Graphen, dass die Bandstruktur einen flachen Bereich etwas unterhalb der Fermi-Energie aufweist.

Die Messungen zeigen beim doppellagigem Graphen, dass die Bandstruktur einen flachen Bereich etwas unterhalb der Fermi-Energie aufweist. © HZB

Doppelschichten aus Graphen haben eine Eigenschaft, die ihnen erlauben könnte, Strom völlig widerstandslos zu leiten. Dies zeigt nun eine Arbeit an BESSY II. Ein Team hat dafür die Bandstruktur dieser Proben mit hoher Präzision ausgemessen und an einer überraschenden Stelle einen flachen Bereich entdeckt. Möglich wurde dies durch die extrem hohe Auflösung des ARPES-Instruments an BESSY II.  

Aus reinem Kohlenstoff bestehen so unterschiedliche Materialien wie Diamant, Graphit oder Graphen. In Graphen bilden die Kohlenstoffatome ein zweidimensionales Netz mit sechseckigen Maschen: eine Honigwabenstruktur. Graphen leitet den Strom zwar sehr gut, ist aber kein Supraleiter. Nun lässt sich dies vielleicht ändern.

Magischer Winkel: der komplizierte Weg zur Supraleitung

Im April 2018 zeigte eine Gruppe am MIT, USA, dass sich in einer doppelten Lage aus Graphen eine Form der Supraleitung erzeugen lassen könnte: Dafür müssen die beiden aufeinandergelegten Honigwaben um einen „magischen Winkel“ von 1,1° gegeneinander verdreht werden. Dies verändert die so genannte Bandstruktur der  Elektronen, die beschreibt, wie sich die Ladungsträger auf quantenmechanisch zulässige Energiezustände verteilen und welche Ladungsträger überhaupt für den Transport zur Verfügung stehen. Durch den „magischen Winkel“ entstehen flache Bereiche in dieser Bandstruktur, so dass sich ein Teil der Ladungsträger frei bewegen kann. Allerdings ist die Herstellung solcher exakt verdrehten Doppellagen viel zu aufwändig für die Massenproduktion. Dennoch hat der Befund bei Experten viel Aufmerksamkeit erregt.

Es geht aber einfacher

Nun zeigt eine Gruppe am HZB um Prof. Dr. Oliver Rader und Dr. Andrei Varykhalov an BESSY II, dass es eine deutlich einfachere Möglichkeit gibt, um flache Bereiche in der Bandstruktur von Graphen zu erzeugen. Die Proben hatte Prof. Dr. Thomas Seyller, TU Chemnitz, mit einem Verfahren hergestellt, das auch für die Produktion größerer Flächen geeignet ist: Ein Siliziumkarbidkristall wird erhitzt, bis Siliziumatome von der Oberfläche verdunsten. Die verbliebenen Kohlenstoffatome bilden zunächst eine Lage Graphen auf der Oberfläche und dann eine zweite Lage Graphen. Die beiden Graphen-Schichten sind dabei nicht gegeneinander verdreht, sondern liegen genau übereinander.

Erst die hohe Auflösung bringt den Einblick

Mit Hilfe von winkelaufgelöster Photoemissionsspektroskopie (ARPES) lässt sich an BESSY II nun die Bandstruktur in Materialien mit extrem hoher Präzision ausmessen. Dabei fand das Team in den Graphen-Proben einen flachen Bereich in der Bandstruktur an einer überraschenden Stelle. "Bisher wurde die Graphen-Doppellage vor allem untersucht, weil sie eine Bandlücke aufweist, die sie zu einem Halbleitermaterial macht", erklärt Varykhalov. "Erst mit der hohen Auflösung, die das ARPES-Instrument liefert, können wir diese Bandlücke genauer vermessen."

"Diesen Bereich hatte bislang niemand so genau untersucht", erklärt Erstautor Dr. Dmitry Marchenko: "Daher wurde bisher übersehen, dass es an dieser Stelle der Bandstruktur von Graphen einen flachen Bereich gibt."

Verschieben ist möglich

Dieser flache Bereich der Bandstruktur ermöglicht eine bestimmte Form der Supraleitung: Denn damit können sich Ladungsträger (Elektronen) in diesem Bereich völlig frei bewegen.  Allerdings nur, wenn sich der flache Bereich genau in Höhe der Fermi-Energie befindet. Beim zweischichtigen Graphen liegt das Energieniveau des flachen Bereichs nur 200 Milli-Elektronenvolt unter der Fermi-Energie. Es ist jedoch möglich, dieses Energieniveau auf die Fermi-Energie zu erhöhen, entweder durch Dotierung mit Fremdatomen oder durch Anlegen einer externen Gate-Spannung. 

Die Physiker haben festgestellt, dass Wechselwirkungen zwischen den Graphen-Schichten sowie zwischen Graphen und Siliziumkarbid-Gitter für die Ausbildung des Flachbandbereichs verantwortlich sind. "Wir können dieses Verhalten mit sehr wenigen Parametern vorhersagen und diesen Mechanismus nutzen, um die Bandstruktur gezielt zu beeinflussen", ergänzt Oliver Rader. 

Publiziert in Science Advances (2018): Extremely Flat Band in Bilayer Graphene; D. Marchenko, D. V. Evtushinsky, E. Golias, A. Varykhalov, Th. Seyller and O. Rader

DOI: 10.1126/sciadv.aau0059

 

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Verleihung des Technologietransfer-Preises 2025
    Nachricht
    07.10.2025
    Verleihung des Technologietransfer-Preises 2025
    Die Verleihung des Technologietransfer-Preises wird am 13. Oktober um 14 Uhr im Hörsaal des BESSY-II-Gebäudes in Adlershof stattfinden.
  • Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Science Highlight
    01.10.2025
    Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Forschende haben erstmals die tatsächlichen Eigenschaften einzelner MXene-Flocken gemessen – einem spannenden neuen Nanomaterial mit Potenzial für bessere Batterien, flexible Elektronik und Geräte für saubere Energie. Mithilfe einer neuartigen lichtbasierten Technik – der spektroskopischen Mikroellipsometrie – haben sie herausgefunden, wie sich MXene auf der Ebene einzelner Flocken verhalten und dabei Veränderungen in der Leitfähigkeit und der optischen Reaktion aufgedeckt, die zuvor bei der Untersuchung gestapelter Schichten verborgen geblieben waren. Dieser Durchbruch liefert grundlegendes Wissen und Werkzeuge für die Entwicklung intelligenterer und effizienterer Technologien auf Basis von MXenen. 
  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.