Die Nutzerkoordination auf Roadtour: Werben für europäische Lichtquellen

© HZB / J. Politt

Synchrotrons sind hervorragende Werkzeuge, um Materialien, Zellen oder auch Kulturgüter zu untersuchen. Doch vielen Forschenden aus Osteuropa sind diese Möglichkeiten unbekannt. Das soll sich nun dank des EU-Projektes CALIPSOplus ändern.

Für Beatrix Seidlhofer und Antje Vollmer aus der Abteilung Nutzerkoordination hieß es im Oktober 2017 Koffer packen. Das ist nichts Ungewöhnliches, denn beide sind dienstlich oft unterwegs. Meistens reisen sie nach West-, Nord- oder Südeuropa, doch dieses Mal ging ihre Reise nach Rumänien. Vor zehn Jahren wurde das Land neu in die EU aufgenommen. Es ist noch immer einer der ärmsten Staaten Europas: In Rumänien liegt das Bruttoinlandsprodukt  bei nur 8600 Euro pro Kopf, in Deutschland sind es 38.000 Euro.

„Bildung und Forschung könnten einen Weg in eine bessere Zukunft bahnen. Genau aus diesem Grund sind wir dorthin gefahren. Wir wollten unseren rumänischen Kollegen zeigen, welche Chancen die Lichtquellen in Europa bieten und dass sie Unterstützung bekommen, um dort zu messen“, sagt Beatrix Seidlhofer.

Ermöglicht werden diese Zuschüsse durch das EU-Projekt CALIPSPOplus. Es fördert den internationalen Austausch von Wissenschaftlern und den transnationalen Zugang zu den europäischen Lichtquellen. Dafür stellt die EU zehn Millionen Eurobereit. Mit den Geldern können nicht nur Messgäste bei Reisen finanziell unterstützt werden. Ein spezielles Partnerprogramm sieht auch vor, dass osteuropäische Forscher an den Lichtquellen von erfahrenen Experten betreut und angelernt werden. „Das sind tolle Möglichkeiten, für die wir aktiv in den neuen EU-Staaten werben wollen“, sagt Antje Vollmer, die Leiterin der Nutzerkoordination. Sie koordiniert das vom HZB geleitetet Partnerprogramm („Twinning Programme“) im Rahmen von CALIPSOplus.

Deshalb sind die HZB-Mitarbeiterinnen nach Rumänien gereist und haben die europäischen Lichtquellen Forschern aus zwei Universitäten und zwei Instituten vorgestellt. Dabei sprachen sie mit ihnen über ihre Arbeit und ihre Messzeit-Wünsche. „Die Forschung in Rumänien ist sehr aktuell und innovativ. Es gibt unter anderem mehrere Gruppen, die an Solarzellen forschen. Aber auch in der Mikrobiologie, Magnetismus oder Bionik haben wir interessante Projekte kennengelernt“, erzählt Seidlhofer. „Doch kaum jemand wusste, dass Messzeiten an BESSY II und anderen Lichtquellen in Europa für Unis kostenfrei sind.“ Die Informationen seien mit Begeisterung aufgenommen worden, einige Forscher wollten sogar sofort Messzeitanträge einreichen.

In Timişoara, einer Universitätsstadt im Westen des Landes, hat Beatrix Seidlhofer einen Vortrag für Abiturienten gehalten; sie selbst spricht gut rumänisch. „In Rumänien entscheiden sich immer weniger Abiturienten für die Naturwissenschaften. Deshalb wurde ich gebeten, an der Uni mit Schulabsolventen zu sprechen, um sie für Physik zu begeistern.“ Am Ende des Vortrags gab es nicht nur viele Fragen, sondern sogar Standing-Ovation der Schüler.

Nach fünf Tagen endete ihre Rundtour. Nicht nur in Rumänien, sondern auch in Berlin wirken die Eindrücke der Reise nach: „Der erste Besuch im Rahmen des CALIPSOplus-Partnerprogramms hat uns gezeigt, wie wichtig es ist, persönliche Kontakte zu knüpfen. In den neuen Mitgliedsstaaten der EU gibt es viele talentierte Menschen, die voller Ideen sind und mit wenig Geld ausgeklügelte Messvorrichtungen bauen“, sagt Beatrix Seidlhofer. Ihre Rundtour wollen sie auch 2018 fortsetzen: Dann geht die Reise nach Bulgarien, Ungarn und Portugal.

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Science Highlight
    01.10.2025
    Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Forschende haben erstmals die tatsächlichen Eigenschaften einzelner MXene-Flocken gemessen – einem spannenden neuen Nanomaterial mit Potenzial für bessere Batterien, flexible Elektronik und Geräte für saubere Energie. Mithilfe einer neuartigen lichtbasierten Technik – der spektroskopischen Mikroellipsometrie – haben sie herausgefunden, wie sich MXene auf der Ebene einzelner Flocken verhalten und dabei Veränderungen in der Leitfähigkeit und der optischen Reaktion aufgedeckt, die zuvor bei der Untersuchung gestapelter Schichten verborgen geblieben waren. Dieser Durchbruch liefert grundlegendes Wissen und Werkzeuge für die Entwicklung intelligenterer und effizienterer Technologien auf Basis von MXenen. 
  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.