Die Nutzerkoordination auf Roadtour: Werben für europäische Lichtquellen

© HZB / J. Politt

Synchrotrons sind hervorragende Werkzeuge, um Materialien, Zellen oder auch Kulturgüter zu untersuchen. Doch vielen Forschenden aus Osteuropa sind diese Möglichkeiten unbekannt. Das soll sich nun dank des EU-Projektes CALIPSOplus ändern.

Für Beatrix Seidlhofer und Antje Vollmer aus der Abteilung Nutzerkoordination hieß es im Oktober 2017 Koffer packen. Das ist nichts Ungewöhnliches, denn beide sind dienstlich oft unterwegs. Meistens reisen sie nach West-, Nord- oder Südeuropa, doch dieses Mal ging ihre Reise nach Rumänien. Vor zehn Jahren wurde das Land neu in die EU aufgenommen. Es ist noch immer einer der ärmsten Staaten Europas: In Rumänien liegt das Bruttoinlandsprodukt  bei nur 8600 Euro pro Kopf, in Deutschland sind es 38.000 Euro.

„Bildung und Forschung könnten einen Weg in eine bessere Zukunft bahnen. Genau aus diesem Grund sind wir dorthin gefahren. Wir wollten unseren rumänischen Kollegen zeigen, welche Chancen die Lichtquellen in Europa bieten und dass sie Unterstützung bekommen, um dort zu messen“, sagt Beatrix Seidlhofer.

Ermöglicht werden diese Zuschüsse durch das EU-Projekt CALIPSPOplus. Es fördert den internationalen Austausch von Wissenschaftlern und den transnationalen Zugang zu den europäischen Lichtquellen. Dafür stellt die EU zehn Millionen Eurobereit. Mit den Geldern können nicht nur Messgäste bei Reisen finanziell unterstützt werden. Ein spezielles Partnerprogramm sieht auch vor, dass osteuropäische Forscher an den Lichtquellen von erfahrenen Experten betreut und angelernt werden. „Das sind tolle Möglichkeiten, für die wir aktiv in den neuen EU-Staaten werben wollen“, sagt Antje Vollmer, die Leiterin der Nutzerkoordination. Sie koordiniert das vom HZB geleitetet Partnerprogramm („Twinning Programme“) im Rahmen von CALIPSOplus.

Deshalb sind die HZB-Mitarbeiterinnen nach Rumänien gereist und haben die europäischen Lichtquellen Forschern aus zwei Universitäten und zwei Instituten vorgestellt. Dabei sprachen sie mit ihnen über ihre Arbeit und ihre Messzeit-Wünsche. „Die Forschung in Rumänien ist sehr aktuell und innovativ. Es gibt unter anderem mehrere Gruppen, die an Solarzellen forschen. Aber auch in der Mikrobiologie, Magnetismus oder Bionik haben wir interessante Projekte kennengelernt“, erzählt Seidlhofer. „Doch kaum jemand wusste, dass Messzeiten an BESSY II und anderen Lichtquellen in Europa für Unis kostenfrei sind.“ Die Informationen seien mit Begeisterung aufgenommen worden, einige Forscher wollten sogar sofort Messzeitanträge einreichen.

In Timişoara, einer Universitätsstadt im Westen des Landes, hat Beatrix Seidlhofer einen Vortrag für Abiturienten gehalten; sie selbst spricht gut rumänisch. „In Rumänien entscheiden sich immer weniger Abiturienten für die Naturwissenschaften. Deshalb wurde ich gebeten, an der Uni mit Schulabsolventen zu sprechen, um sie für Physik zu begeistern.“ Am Ende des Vortrags gab es nicht nur viele Fragen, sondern sogar Standing-Ovation der Schüler.

Nach fünf Tagen endete ihre Rundtour. Nicht nur in Rumänien, sondern auch in Berlin wirken die Eindrücke der Reise nach: „Der erste Besuch im Rahmen des CALIPSOplus-Partnerprogramms hat uns gezeigt, wie wichtig es ist, persönliche Kontakte zu knüpfen. In den neuen Mitgliedsstaaten der EU gibt es viele talentierte Menschen, die voller Ideen sind und mit wenig Geld ausgeklügelte Messvorrichtungen bauen“, sagt Beatrix Seidlhofer. Ihre Rundtour wollen sie auch 2018 fortsetzen: Dann geht die Reise nach Bulgarien, Ungarn und Portugal.

(sz)

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.