HZB beteiligt sich an zwei Exzellenzclustern

Am Helmholtz-Zentrum Berlin (HZB) forschen Wissenschaftlerinnen und Wissenschaftler an neuartigen Materialsystemen, die Energie umwandeln oder speichern können. Diese Kompetenzen bringt das HZB nun auch in die Exzellenzcluster „MATH+“ und „UniSysCat“ ein, die von Berliner Universitäten koordiniert werden. Die Helmholtz-Gemeinschaft fördert die HZB-Beteiligung in den nächsten drei Jahren im Rahmen des Helmholtz-Exzellenznetzwerks mit insgesamt 1,8 Millionen Euro.

Im Exzellenzcluster „MATH+“ engagiert sich Prof. Dr. Christiane Becker, die am HZB die Nanooptik-Gruppe im Bereich Erneuerbare Energien leitet. Sie untersucht und entwickelt optoelektronische Materialien mit Nanostrukturen für Solarzellen und Sensoren. Dafür arbeitet Becker eng mit Mathematikerinnen und Mathematikern in MATH+ zusammen. Gemeinsam wollen sie hocheffiziente Solarenergie-Technologien der nächsten Generation entwickeln, zum Beispiel um das Lichtmanagement in Tandem-Perowskit-Silizium-Solarzellen zu verbessern. Sie werden auch gemeinsam an hybriden Bauteilen zur Erzeugung von solaren Brennstoffen arbeiten sowie Simulations- und Optimierungsmethoden entwickeln.

MATH+ Partner

MATH+ steht für “Forschungszentrum der Berliner Mathematik / Berlin Mathematics Research Center“. Daran beteiligen sich die Freie Universität Berlin, die Humboldt-Universität zu Berlin und die Technischen Universität Berlin sowie das Weierstraß-Institut für Angewandte Analysis und Stochastik und das Zuse-Institut Berlin. Die Helmholtz-Gemeinschaft fördert die HZB-Beteiligung aus dem Impuls- und Vernetzungsfonds mit 800.000 Euro in den kommenden drei Jahren.

Excellenzcluster UniSysCat: Fokus auf der Katalyse

Im Exzellenzcluster „UniSysCat“ (Vereinigung von Systemen in der Katalyse/Unifying Systems in Catalysis) arbeiten Forscherinnen und Forscher daran, komplexe katalytische Systeme zu entwickeln. Dabei stehen katalytische Prozesse im Mittelpunkt, die mit Sonnenlicht aktiviert werden. „Diese Prozesse ermöglichen es, Sonnenlicht zu nutzen, um chemische Treibstoffe sowie energiereiche Verbindungen in einer nachhaltigen Art und Weise zu erzeugen. Eine besondere Herausforderung liegt hierbei darin, die schnellen Absorptionsprozesse im Halbleitermaterial mit den häufig sehr viel langsamer ablaufenden elektrochemischen Reaktionen des angebundenen Katalysators zu verknüpfen“, erläutert Prof. Dr. Roel van de Krol, der das HZB-Institut für Solare Brennstoffe leitet. Dabei bringt das HZB insbesondere Kompetenzen in der Materialsynthese von Dünnschicht-Absorbern, in der Photoelektrochemie und zeitaufgelöster optischer Spektroskopie ein.

UniSysCat-Partner

UniSysCat  wird von der Technischen Universität Berlin koordiniert, außerdem beteiligen sich Teams der Freien Universität Berlin, der Humboldt-Universität zu Berlin, der Universität Potsdam, der Charité Universitätsmedizin Berlin, des Fritz-Haber-Instituts, des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung (MPIKG) und des Leibniz-Instituts für Molekulare Pharmakologie. Die Helmholtz-Gemeinschaft fördert die HZB-Beteiligung aus dem Impuls- und Vernetzungsfonds mit 1 Million Euro in den kommenden drei Jahren.

 

 

 

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Science Highlight
    12.08.2025
    Lithium-Schwefel-Batterien mit wenig Elektrolyt: Problemzonen identifiziert
    Mit einer zerstörungsfreien Methode hat ein Team am HZB erstmals Lithium-Schwefel-Batterien im praktischen Pouchzellenformat untersucht, die mit besonders wenig Elektrolyt-Flüssigkeit auskommen. Mit operando Neutronentomographie konnten sie in Echtzeit visualisieren, wie sich der flüssige Elektrolyt während des Ladens und Entladens über mehrere Schichten verteilt und die Elektroden benetzt. Diese Erkenntnisse liefern wertvolle Einblicke in die Mechanismen, die zum Versagen der Batterie führen können, und sind hilfreich für die Entwicklung kompakter Li-S-Batterien mit hoher Energiedichte.
  • Selbst organisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Science Highlight
    04.08.2025
    Selbst organisierte Monolage verbessert auch bleifreie Perowskit-Solarzellen
    Zinn-Perowskit-Solarzellen sind nicht nur ungiftig, sondern auch potenziell stabiler als bleihaltige Perowskit-Solarzellen. Allerdings sind sie auch deutlich weniger effizient. Nun gelang einem internationalen Team eine deutliche Verbesserung:  Das Team identifizierte chemische Verbindungen, die von selbst eine molekulare Schicht bilden, welche sehr gut zur Gitterstruktur von Zinn-Perowskiten passt. Auf dieser Monolage lässt sich Zinn-Perowskit mit hervorragender optoelektronischer Qualität aufwachsen.
  • Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Nachricht
    24.07.2025
    Berliner Wissenschaftspreis geht an Philipp Adelhelm
    Der Batterieforscher Prof. Dr. Philipp Adelhelm wird mit dem Berliner Wissenschaftspreis 2024 ausgezeichnet.  Er ist Professor am Institut für Chemie der Humboldt-Universität zu Berlin (HU) und leitet eine gemeinsame Forschungsgruppe der HU und des Helmholtz-Zentrums Berlin (HZB). Der Materialwissenschaftler und Elektrochemiker forscht zur Entwicklung nachhaltiger Batterien, die eine Schlüsselrolle für das Gelingen der Energiewende spielen. International zählt er zu den führenden Expert*innen auf dem Gebiet der Natrium-Ionen-Batterien.