HZB beteiligt sich an zwei Exzellenzclustern

Am Helmholtz-Zentrum Berlin (HZB) forschen Wissenschaftlerinnen und Wissenschaftler an neuartigen Materialsystemen, die Energie umwandeln oder speichern können. Diese Kompetenzen bringt das HZB nun auch in die Exzellenzcluster „MATH+“ und „UniSysCat“ ein, die von Berliner Universitäten koordiniert werden. Die Helmholtz-Gemeinschaft fördert die HZB-Beteiligung in den nächsten drei Jahren im Rahmen des Helmholtz-Exzellenznetzwerks mit insgesamt 1,8 Millionen Euro.

Im Exzellenzcluster „MATH+“ engagiert sich Prof. Dr. Christiane Becker, die am HZB die Nanooptik-Gruppe im Bereich Erneuerbare Energien leitet. Sie untersucht und entwickelt optoelektronische Materialien mit Nanostrukturen für Solarzellen und Sensoren. Dafür arbeitet Becker eng mit Mathematikerinnen und Mathematikern in MATH+ zusammen. Gemeinsam wollen sie hocheffiziente Solarenergie-Technologien der nächsten Generation entwickeln, zum Beispiel um das Lichtmanagement in Tandem-Perowskit-Silizium-Solarzellen zu verbessern. Sie werden auch gemeinsam an hybriden Bauteilen zur Erzeugung von solaren Brennstoffen arbeiten sowie Simulations- und Optimierungsmethoden entwickeln.

MATH+ Partner

MATH+ steht für “Forschungszentrum der Berliner Mathematik / Berlin Mathematics Research Center“. Daran beteiligen sich die Freie Universität Berlin, die Humboldt-Universität zu Berlin und die Technischen Universität Berlin sowie das Weierstraß-Institut für Angewandte Analysis und Stochastik und das Zuse-Institut Berlin. Die Helmholtz-Gemeinschaft fördert die HZB-Beteiligung aus dem Impuls- und Vernetzungsfonds mit 800.000 Euro in den kommenden drei Jahren.

Excellenzcluster UniSysCat: Fokus auf der Katalyse

Im Exzellenzcluster „UniSysCat“ (Vereinigung von Systemen in der Katalyse/Unifying Systems in Catalysis) arbeiten Forscherinnen und Forscher daran, komplexe katalytische Systeme zu entwickeln. Dabei stehen katalytische Prozesse im Mittelpunkt, die mit Sonnenlicht aktiviert werden. „Diese Prozesse ermöglichen es, Sonnenlicht zu nutzen, um chemische Treibstoffe sowie energiereiche Verbindungen in einer nachhaltigen Art und Weise zu erzeugen. Eine besondere Herausforderung liegt hierbei darin, die schnellen Absorptionsprozesse im Halbleitermaterial mit den häufig sehr viel langsamer ablaufenden elektrochemischen Reaktionen des angebundenen Katalysators zu verknüpfen“, erläutert Prof. Dr. Roel van de Krol, der das HZB-Institut für Solare Brennstoffe leitet. Dabei bringt das HZB insbesondere Kompetenzen in der Materialsynthese von Dünnschicht-Absorbern, in der Photoelektrochemie und zeitaufgelöster optischer Spektroskopie ein.

UniSysCat-Partner

UniSysCat  wird von der Technischen Universität Berlin koordiniert, außerdem beteiligen sich Teams der Freien Universität Berlin, der Humboldt-Universität zu Berlin, der Universität Potsdam, der Charité Universitätsmedizin Berlin, des Fritz-Haber-Instituts, des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung (MPIKG) und des Leibniz-Instituts für Molekulare Pharmakologie. Die Helmholtz-Gemeinschaft fördert die HZB-Beteiligung aus dem Impuls- und Vernetzungsfonds mit 1 Million Euro in den kommenden drei Jahren.

 

 

 

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Nachricht
    22.10.2025
    Erfolgreicher Masterabschluss zu IR-Thermografie an Solarfassaden
    Wir freuen uns sehr und gratulieren unserer studentischen Mitarbeiterin Luca Raschke zum erfolgreich abgeschlossenen Masterstudium der Regenerativen Energien an der Hochschule für Technik und Wirtschaft Berlin – und das mit Auszeichnung!
  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.