Water is more homogeneous than expected

Water molecules are excited with X-ray light (blue). From the emitted light (purple) information on H-bonds can be obtained.

Water molecules are excited with X-ray light (blue). From the emitted light (purple) information on H-bonds can be obtained. © T. Splettstoesser/HZB

In order to explain the known anomalies in water, some researchers assume that water consists of a mixture of two phases even under ambient conditions. However, new X-ray spectroscopic analyses at BESSY II, ESRF and Swiss Light Source show that this is not the case. At room temperature and normal pressure, the water molecules form a fluctuating network with an average of 1.74 ± 2.1% donor and acceptor hydrogen bridge bonds per molecule each, allowing tetrahedral coordination between close neighbours.

Water at ambient conditions is the matrix of life and chemistry and behaves anomalously in many of its properties. Since Wilhelm Conrad Röntgen, two distinct separate phases have been argued to coexist in liquid water, competing with the other view of a single-phase liquid in a fluctuating hydrogen bonding network – the continuous distribution model. Over time, X-ray spectroscopic methods have repeatedly been interpreted in support of Röntgen’s postulate.

Three lightsources involved

An international team of researchers, led in their effort by Prof. A. Föhlisch from Helmholtz-Zentrum Berlin and the University of Potsdam, conducted quantitative and high-resolution X-ray spectroscopic multi-method investigations and analysis to address these diverging views at the light sources BESSY II, European Synchrotron Radiation Facility ESRF and Swiss Light Source.

Result: tetrahedral coordination

They establish that the X-ray spectroscopic observables can be fully and consistently described with continuous distribution models of near-tetrahedral liquid water at ambient conditions with 1.74 ± 2.1% donated and accepted H-bonds per molecule. In addition, across the full phase diagram of water, clear correlations to e.g. second shell coordination is established and the influence of ultrafast dynamics associated with X-ray matter interaction is separated and quantified.

Continous distribution model holds true

Can these X-ray spectroscopic conclusions on water at ambient conditions now also resolve the heavily debated question of the existence of a second critical point in the so-called "no man’s land" of supercooled water? This postulated second critical point is conceptually based on the extension of the established low- and high-density amorphous ice phases into purported low- and high-density liquid phases along a Widom line where the second critical point is found as the extrapolated divergence of stable and supercooled water‘s thermodynamic response functions around -45°C at atmospheric pressure.

From the physics of critical fluctuations, it is known, that well above a critical point one should view the state of matter as homogeneous. Incipient and large fluctuations are allowed as one approaches closely the phase boundary and the critical point: How close one has to approach it in energy and on what time scale to sense the divergence is not fully answered, but expectations from observations in solid state physics are that you have to be close to realize the 2-phase effects.

Even if the purported second critical point at -45°C and ambient pressure existed, the ambient conditions of liquid water in equilibrium would be by any means far away in temperature. Thus, the fluctuating continuous distribution model of near-tetrahedral liquid water at ambient conditions holds true independent of whether the second critical point of water in the supercooled region exists or not.

Text by Alexander Föhlisch

The study is published in the Proceedings der National Academy of Science, PNAS 2019: Compatibility of quantitative X-ray spectroscopy with continuous distribution models of water at ambient conditions. Johannes Niskanen, Mattis Fondell, Sebastian Eckert, Raphael M. Jay, Annette Pietzsch, Vinicius Vaz da Cruz, Alexander Föhlisch

DOI: 10.1073/pnas.1815701116

 

arö

  • Copy link

You might also be interested in

  • Synchrotron radiation sources: toolboxes for quantum technologies
    Science Highlight
    01.12.2025
    Synchrotron radiation sources: toolboxes for quantum technologies
    Synchrotron radiation sources generate highly brilliant light pulses, ranging from infrared to hard X-rays, which can be used to gain deep insights into complex materials. An international team has now published an overview on synchrotron methods for the further development of quantum materials and technologies in the journal Advanced Functional Materials: Using concrete examples, they show how these unique tools can help to unlock the potential of quantum technologies such as quantum computing, overcome production barriers and pave the way for future breakthroughs.
  • Peat as a sustainable precursor for fuel cell catalyst materials
    Science Highlight
    25.11.2025
    Peat as a sustainable precursor for fuel cell catalyst materials
    Iron-nitrogen-carbon catalysts have the potential to replace the more expensive platinum catalysts currently used in fuel cells. This is shown by a study conducted by researchers from the Helmholtz-Zentrum Berlin (HZB), Physikalisch-Technische Bundesanstalt (PTB) and universities in Tartu and Tallinn, Estonia. At BESSY II, the team observed the formation of complex microstructures within various samples. They then analysed which structural parameters were particularly important for fostering the preferred electrochemical reactions. The raw material for such catalysts is well decomposed peat.
  • Helmholtz Investigator Group on magnons
    News
    24.11.2025
    Helmholtz Investigator Group on magnons
    Dr Hebatalla Elnaggar is setting up a new Helmholtz Investigator Group at HZB. At BESSY II, the materials scientist will investigate so-called magnons in magnetic perovskite thin films. The aim is to lay the foundations for future terahertz magnon technology: magnonic devices operating in the terahertz range could process data using a fraction of the energy required by the most advanced semiconductor devices, and at speeds up to a thousand times faster.