Wasser ist homogener als gedacht

Mit Röntgenlicht (blau) werden Wassermoleküle angeregt. Aus dem abgestrahlten Licht (lila) lassen sich Informationen über Wasserstoffbrücken gewinnen.

Mit Röntgenlicht (blau) werden Wassermoleküle angeregt. Aus dem abgestrahlten Licht (lila) lassen sich Informationen über Wasserstoffbrücken gewinnen. © T. Splettstoesser/HZB

Um die bekannten Anomalien in Wasser zu erklären, gehen manche Forscher davon aus, dass Wasser auch bei Umgebungsbedingungen aus einer Mischung von zwei Phasen besteht. Neue röntgenspektroskopische Analysen an BESSY II, der ESRF und der Swiss Light Source zeigen jedoch, dass dies nicht der Fall ist. Bei Raumtemperatur und normalem Druck bilden die Wassermoleküle ein fluktuierendes Netz mit durchschnittlich je 1,74 ± 2.1%  Donator- und Akzeptor-Wasserstoffbrückenbindungen pro Molekül, die eine tetrahedrische Koordination zwischen nächsten Nachbarn ermöglichen.

Wasser ist das „Element“ des Lebens, die meisten biologischen Prozesse sind auf Wasser angewiesen. Dennoch gibt Wasser noch immer Rätsel auf. So dehnt es sich aus, wenn es gefriert und zeigt weitere Anomalien, wenn sich Temperatur oder Druck verändern. Das sogenannte Phasendiagramm von Wasser ist relativ komplex. Wilhelm Conrad Röntgen hatte Ende des 19.ten Jahrhunderts eine Erklärung dafür vorgeschlagen: Flüssiges Wasser könnte aus einer Mischung von zwei unterschiedlichen Phasen bestehen, in einer befänden sich die Wassermoleküle in einem geordneten Zustand so wie im Eis, in der anderen Phase dagegen wären die Wassermoleküle völlig ungebunden wie in einem Gas. Röntgen selbst hatte Zweifel an diesem „Mischungsmodell“. Denn es ist deutlich komplizierter als das „Kontinuumsmodell“, das davon ausgeht, dass sich in flüssigem Zustand die Wassermoleküle über Wasserstoffbrückenbindungen lose und ungeordnet vernetzen. Doch tatsächlich schienen in den letzten Jahren neue Röntgenstudien eher das Mischungsmodell zu stützen.

Messungen an drei Lichtquellen

Nun hat ein internationales Team um Prof. Alexander Föhlisch (HZB und Universität Potsdam) an der Synchrotronlichtquelle BESSY II sowie an der European Synchrotron Radiation Facility ESRF und der Swiss Light Source Wasserproben mit modernsten röntgenspektroskopischen Methoden untersucht. Die Messdaten zeigen, dass bei Umgebungsbedingungen Wassermoleküle über Wasserstoffbrückenbindungen mit ihren nächsten Nachbarn nahezu tetahedral koordiniert sind. Pro Molekül gibt es jeweils 1,74 ± 2,1% Akzeptor- und  Donator-H-Bindungen, also insgesamt fast vier Bindungen, was eine tetrahedrale Koordination ermöglicht.

Kontinuumsmodell passt

Darüber hinaus konnten die Wissenschaftler aus den Daten auch ermitteln, wie sich Wassermoleküle mit ihren übernächsten Nachbarn koordinieren. Die Röntgenspektren spiegeln auch die unterschiedliche Dynamik von verschiedenen Anregungsprozessen, so findet die kurzzeitige Bildung oder Lösung von Wasserstoffbrücken tausendmal schneller statt als eine Anregung der Wassermoleküle selbst. Die Ergebnisse zeigen, dass das Kontinuumsmodell Wasser bei Umgebungsbedingungen angemessen beschreibt.

Die Studie geht auf weitere offene Fragen im Phasendiagramm von Wasser ein, insbesondere zur möglichen Existenz eines zweiten kritischen Punktes im sogenannten "Niemandsland" des unterkühlten Wassers.


Die Studie wurde in den Proceedings der National Academy of Science, PNAS 2019, veröffentlicht: Compatibility of quantitative X-ray spectroscopy with continuous distribution models of water at ambient conditions. Johannes Niskanen, Mattis Fondell, Sebastian Eckert, Raphael M. Jay, Annette Pietzsch, Vinicius Vaz da Cruz, Alexander Föhlisch

 DOI:10.1073/pnas.1815701116

 

 

 

 

 

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe. 

  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.
  • Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Science Highlight
    05.11.2025
    Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Noch immer ist die Hochtemperatursupraleitung nicht vollständig verstanden. Nun hat ein internationales Forschungsteam an BESSY II die Energie von Ladungsträgerpaaren in undotiertem La₂CuO₄ vermessen. Die Messungen zeigten, dass die Wechselwirkungsenergien in den potenziell supraleitenden Kupferoxid-Schichten deutlich geringer sind als in den isolierenden Lanthanoxid-Schichten. Die Ergebnisse tragen zum besseren Verständnis der Hochtemperatur-Supraleitung bei und könnten auch für die Erforschung anderer funktionaler Materialien relevant sein.