Marcel Risch to form research group at the HZB with an ERC Starting Grant

Dr. Marcel Risch has been awarded with an ERC Starting Grant and will continue his research at HZB.

Dr. Marcel Risch has been awarded with an ERC Starting Grant and will continue his research at HZB.

Marcel Risch's research group at Georg August Universität, Göttingen, Germany.

Marcel Risch's research group at Georg August Universität, Göttingen, Germany. © M.Risch

The Helmholtz-Zentrum Berlin (HZB) will be further strengthened in its research on solar fuels. Dr. Marcel Risch, who recently obtained an ERC Starting Grants, is moving from Georg August Universität, Göttingen to the HZB. Starting in March 2019, the materials physicist will set up his own research group to analyse and improve catalytic materials for water splitting.

Marcel Risch already knows the Helmholtz-Zentrum Berlin as a user, and now he will come permanently. The opportunity to combine materials synthesis, electrochemistry, and X-ray spectroscopy offered at the Energy Materials In Situ Laboratory (EMIL) at the BESSY II synchrotron source for example, are particularly attractive for him. Risch is researching catalytically active materials for splitting water into hydrogen and oxygen. This makes it feasible to produce hydrogen, which is a climate-neutral alternative to fossil fuels.

Risch received his doctorate from Freie Universität Berlin in 2011. The physicist then spent four years as a postdoctoral fellow at the Massachusetts Institute of Technology (MIT) in Cambridge, USA. Since 2016 he has been conducting research at the Institut für Materialphysik at Georg August Universität in Göttingen, Germany, most recently as head of a Young Investigator Group.

His research project for which he recently received the ERC Starting Grant from the European Research Council deals with the mechanism of oxygen development during the catalytic decomposition of water. The project is entitled “ME4OER - Mechanism Engineering of the Oxygen Evolution Reaction” and is funded by the ERC Starting Grant of 1.5 million euros for five years.

Risch and his team will study selected synthetic materials with specific crystal structures (spinel or perovskite-type). He is concentrating on the class of transition metal oxides that are very inexpensive but exhibit low efficiency in the oxygen evolution reaction (OER) which limits the production of hydrogen. Risch wants to increase the efficiency of such catalysts by several orders of magnitude through detailed knowledge of the reaction processes. To do this, the catalytic reactions on the surfaces must be analysed in detail. At EMIL he can fabricate these surfaces and analyse them in situ or in operando using X-ray spectroscopic methods.

arö

  • Copy link

You might also be interested in

  • Key technology for a future without fossil fuels
    Interview
    21.08.2025
    Key technology for a future without fossil fuels
    In June and July 2025, catalyst researcher Nico Fischer spent some time at HZB. It was his sabbatical, he was relieved of his duties as Director of the Catalysis Institute in Cape Town for several months and was able to focus on research only. His institute is collaborating with HZB on two projects that aim to develop environmentally friendly alternatives using innovative catalyst technologies. The questions were asked by Antonia Rötger, HZB.
  • Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Science Highlight
    12.08.2025
    Lithium-sulphur batteries with lean electrolyte: problem areas clarified
    Using a non-destructive method, a team at HZB investigated practical lithium-sulphur pouch cells with lean electrolyte for the first time. With operando neutron tomography, they could visualise in real-time how the liquid electrolyte distributes and wets the electrodes across multilayers during charging and discharging. These findings offer valuable insights into the cell failure mechanisms and are helpful to design compact Li-S batteries with a high energy density in formats relevant to industrial applications.
  • Self assembling monolayer can improve lead-free perovskite solar cells too
    Science Highlight
    04.08.2025
    Self assembling monolayer can improve lead-free perovskite solar cells too
    Tin perovskite solar cells are not only non-toxic, but also potentially more stable than lead-containing perovskite solar cells. However, they are also significantly less efficient. Now, an international team has succeeded in reducing losses in the lower contact layer of tin perovskite solar cells: The scienstists identified chemical compounds that self-assemble into a molecular layer that fits very well with the lattice structure of tin perovskites. On this monolayer, tin perovskite with excellent optoelectronic quality can be grown, which increases the performance of the solar cell.