Laserinduzierte Spindynamik in Ferrimagneten: Wohin geht der Drehimpuls?

Experimente an der Femtoslicing-Anlage von BESSY II zeigten den ultraschnellen Drehimpulsfluss von Gd- und Fe-Spins zum Gitter während der Entmagnetisierung der GdFe-Legierung.

Experimente an der Femtoslicing-Anlage von BESSY II zeigten den ultraschnellen Drehimpulsfluss von Gd- und Fe-Spins zum Gitter während der Entmagnetisierung der GdFe-Legierung. © R. Abrudan/HZB

Durch intensive Laserpulse kann die Magnetisierung eines Materials sehr schnell manipuliert werden. Magnetisierung wiederum ist fundamental mit dem Drehimpuls der Elektronen im Material verbunden. Ein Forscherteam des Max-Born-Instituts für Nichtlineare Optik und Kurzzeitspektroskopie (MBI) konnte nun an BESSY II den Drehimpulstransfer in einer ferrimagnetischen Eisen-Gadolinium-Legierung im Detail verfolgen. Dabei gelang es ihnen, am Femtoslicing-Experiment bei BESSY II die ultraschnelle optische Entmagnetisierung zu vermessen und deren grundlegende Prozesse und Geschwindigkeitsgrenzen zu verstehen. Die Forschungsergebnisse wurden in der Zeitschrift „Physical Review Letters“ veröffentlicht.

Die Belichtung mit einem ultrakurzen Laserpuls erlaubt es, ein Material sehr schnell zu entmagnetisieren - für die prototypischen Ferromagnete Eisen, Kobalt und Nickel zum Beispiel wird die Magnetisierung innerhalb von etwa einer Pikosekunde (10-12 s) nach dem Auftreffen des Laserpulses auf das Material ausgelöscht. Daraus ergibt sich die Frage, über welche Kanäle der mit der Magnetisierung verbundene Drehimpuls während der kurzen verfügbaren Zeit auf andere Reservoire übertragen wird.

Nun konnte eine internationale Kooperation von Forschenden bei BESSY II den Drehimpulstransfer in einer Probe aus Eisen-Gadolinium erstmals im Detail verfolgen. An der Studie unter Federführung von Dr. Ilie Radu (MBI) und Prof. Stefan Eisebitt (TU Berlin, MBI) haben auch Teams des HZB sowie der Nihon University in Japan mitgewirkt.

Experiment an der Femtoslicing Beamline

Die Eisen-Gadolinium-Probe ist ferrimagnetisch: benachbarte Eisen (Fe)- und Gadolinium (Gd)-Atome sind in entgegengesetzter Richtung magnetisiert. Die Proben wurden zunächst mit Laserstrahlung angeregt und dann mit ultrakurzen, zirkular polarisierten Röntgenpulsen an der Femtoslicing-Beamline von BESSY II untersucht. Dadurch ließ sich die unterschiedliche magnetfeldabhängige Absorption zirkular polarisierter Röntgenpulse durch die Fe- und Gd-Atome als Funktion der Zeit beobachten.

Dieser Ansatz ermöglicht es, die ultraschnelle Entmagnetisierung sowohl beim Element Eisen als auch beim Gadolinium jeweils einzeln zu verfolgen. Darüber hinaus ist es sogar möglich, bei der Analyse der jeweiligen Absorptionsspektren zwischen dem in der Bahnbewegung und im Spin der Elektronen gespeicherten Drehimpuls zu unterscheiden.

Mit diesem detaillierten "Röntgenbild" fanden die Wissenschaftler heraus, dass während des Entmagnetisierungsprozesses der GdFe-Legierung der Drehimpuls von Gd- und Fe-Spins zu den Orbitalmomenten und schließlich zum Gitter fließt. Und zwar auf einer Zeitskala von weniger als einer Picosekunde.

Schnellere Datenspeicherung

Da kurze Laserpulse auch zum permanenten Umschalten der Magnetisierung und damit zum Schreiben von Bits für die magnetische Datenspeicherung verwendet werden können, ist der Einblick in die Dynamik dieser grundlegenden Mechanismen von großer Bedeutung, um neue Ansätze zu entwickeln, die es ermöglichen, Daten viel schneller als heute auf Massenspeichermedien zu schreiben.

 

MBI/HZB

  • Link kopieren

Das könnte Sie auch interessieren

  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.
  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in Phosphor nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.