Entwicklung eines miniaturisierten EPR-Spektrometers

© Benedikt Schlecker

Das Projekt "EPR on a Chip" startete am 3. Juni 2019 mit einem Auftakttreffen am HZB.

Das Projekt "EPR on a Chip" startete am 3. Juni 2019 mit einem Auftakttreffen am HZB. © HZB

Mehrere Forschungseinrichtungen entwickeln mit dem Industriepartner Bruker eine miniaturisierte EPR-Messvorrichtung, um Halbleitermaterialien, Solarzellen, Katalysatoren und Elektroden für Brennstoffzellen und Batterien zu untersuchen. Das „Lab on a Chip“ wird einen Technologiesprung in der Elektronenspinresonanz (EPR auf Englisch) ermöglichen. Das Bundesministerium für Bildung und Forschung (BMBF) fördert das Projekt „EPR-on-a-Chip“ mit 6,7 Millionen Euro. Am 3. Juni 2019 fand das Auftakttreffen am Helmholtz-Zentrum Berlin statt.

Die Elektronenspinresonanz bzw. elektronenparamagnetische Resonanz (EPR) liefert über die Anregung von Elektronenspins im Material detaillierte Information über dessen innere Struktur, bis hinunter auf die atomare Ebene. EPR-Spektroskopie ist ein wichtiges Instrument in der Biophysik, Chemie und medizinischen Diagnostik, wird mittlerweile aber auch in der Forschung an Energiematerialien wie Katalysatoren, Batterieelektroden und Solarzellenkomponenten eingesetzt.

Allerdings sind EPR-Spektrometer üblicherweise große und teure Geräte, die nur in besonders gut ausgestatteten Forschungslaboren zu finden sind. Zudem ist es mit konventionellen EPR-Geräten sehr schwierig, Untersuchungen unter realen Prozessbedingungen (operando-Messung) durchzuführen.

Doch es geht tatsächlich auch anders: Eine erste Demoversion eines miniaturisierten EPR-Spektrometers wurde bereits 2017 vorgestellt. Im Rahmen des BMBF-Projekts „EPRoC“ soll nun unter der Leitung von Prof. Dr. Klaus Lips und in enger Zusammenarbeit mit der Universität Stuttgart, dem Max-Planck-Institut für Chemische Energiekonversion, dem Karlsruher Institut für Technologie und der Firma Bruker eine Chip-basierte elektronenparamagnetische Resonanzspektroskopie (EPRoC) entwickelt werden, die diese systembedingten Nachteile für operando-Untersuchungen nicht mehr hat.

EPR-Chip kann sogar im Inneren der Probe platziert werden

Das EPR-Spektrometer wird dabei auf Chip-Größe miniaturisiert, so dass es sogar ins Innere der Probe eingeführt werden kann. Ziel ist es, mit Hilfe der EPRoC direkt Wachstumsprozesse von Dünnschichten für die Photovoltaik zu analysieren sowie katalytische Vorgänge während der Herstellung von solarem Wasserstoff zu untersuchen und zu verbessern. Dadurch ließe sich aufklären, wie die Strukturbildung auf der Nanoskala mit der Funktionalität der Prozesse und Materialien zusammenhängt.

Diese Technologie könnte auch andere analytische Verfahren verbessern

Während der dreijährigen Laufzeit des Projekts wollen die Partner das Potenzial der Technologie erschließen, indem sie die Effizienz der Prozesse und Bauelemente weiter verbessern und die Kosten senken. Zusätzlich wollen sie die EPRoC-Technik nutzen, um die Empfindlichkeit der Kernspinspektrometer (NMR) deutlich zu verbessern. Dies könnte sich langfristig auch auf die in der Medizin eingesetzte Magnetresonanztomographie auswirken.

Die Erkenntnisse sollen dafür sorgen, dass die EPRoC-Technologie innerhalb der nächsten zehn Jahre weiter entwickelt werden kann. Die Miniaturisierung der EPR wird neue Anwendungsgebiete erschließen und kann zu rascheren Fortschritten in der Energiematerialforschung, Sensorik, Medizin, Umwelttechnik, sowie der Lebensmittel- und analytischen Chemie führen.

Partner:

• Helmholtz-Zentrum Berlin, Institut für Nanospektroskopie (HZB), Koordination Prof. Dr. Klaus Lips

• Universität Stuttgart

• Karlsruher Institut für Technologie, Institut für Mikrostrukturtechnologie (KIT)

• Max-Planck-Institut für Chemische Energiekonversion (MPICEC)

• Bruker Biospin GmbH 

arö


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.

  • HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Nachricht
    09.07.2024
    HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Auf der Suche nach dem perfekten Katalysator bekommt HZB-Forscher Robert Seidel nun Rückenwind – durch einen hochkarätigen ERC Consolidator Grant. In der Titelgeschichte stellen wir vor, warum die Röntgenquelle BESSY II für sein Vorhaben eine wichtige Rolle spielt.