Development of a miniaturised EPR spectrometer

© Benedikt Schlecker

The "EPR on a Chip" project did start on June 3. 2019 with a kick off meeting in Berlin at HZB.

The "EPR on a Chip" project did start on June 3. 2019 with a kick off meeting in Berlin at HZB. © HZB

Several research institutions are developing a miniaturized electron paramagnetic resonance (EPR) device with industrial partner Bruker to investigate semiconductor materials, solar cells, catalysts and electrodes for fuel cells and batteries. The Federal Ministry of Education and Research (BMBF) is funding the "EPR-on-a-Chip" or EPRoC project with 6.7 million euros. On June 3, 2019, the kick-off meeting took place at the Helmholtz-Zentrum Berlin.

Electron paramagnetic resonance (EPR) provides detailed information about the material's inner structure, down to the atomic level, via the excitation of electron spin in the material. EPR spectroscopy is an important instrument in biophysics, chemistry and medical diagnostics, but is also used in research on energy materials such as catalysts, battery electrodes and solar cell components.

However, EPR spectrometers are usually large and expensive devices that can only be found in particularly well-equipped research laboratories. In addition, it is very difficult to perform investigations under real process conditions (operando measurement) with conventional EPR instruments.

But there is another way: The first demo version of a miniaturized EPR spectrometer was presented in 2017. As part of the BMBF project "EPRoC", a chip-based electron paramagnetic resonance spectroscopy (EPRoC) is to be developed under the direction of Prof. Dr. Klaus Lips and in close cooperation with the University of Stuttgart, the Max Planck Institute for Chemical Energy Conversion, the Karlsruhe Institute of Technology and the Bruker company.

The EPR spectrometer is miniaturized to chip size so that it can even be inserted inside the sample. The aim is to use EPRoC to directly analyze growth processes of thin films for photovoltaics and to investigate and improve catalytic processes during the production of solar hydrogen. This would allow to elucidate how structure formation on the nanoscale is related to the functionality of processes and materials.

During the three-year term of the project, the partners will explore the potential of the technology by further improving the efficiency of the processes and components and reducing costs. In addition, they aim to use EPRoC technology to dramatically improve the sensitivity of nuclear magnetic resonance (NMR) spectrometers. This could also have a long-term impact on magnetic resonance imaging used in medicine.

The findings should ensure that EPRoC technology can be developed to market maturity within the next ten years. The miniaturisation of EPR will open up new fields of application and can lead to faster progress in energy materials research, sensor technology, medicine, environmental technology, as well as food and analytical chemistry.

- Helmholtz-Zentrum Berlin, Institute for Nanospectroscopy (HZB), Coordination Prof. Dr. Klaus Lips
- University of Stuttgart
- Karlsruhe Institute of Technology, Institute for Microstructure Technology (KIT)
- Max Planck Institute for Chemical Energy Conversion (MPICEC)
- Bruker Biospin GmbH


You might also be interested in

  • Stability of perovskite solar cells reaches next milestone
    Science Highlight
    Stability of perovskite solar cells reaches next milestone
    Perovskite semiconductors promise highly efficient and low-cost solar cells. However, the semi-organic material is very sensitive to temperature differences, which can quickly lead to fatigue damage in normal outdoor use. Adding a dipolar polymer compound to the precursor perovskite solution helps to counteract this. This has now been shown in a study published in the journal Science by an international team led by Antonio Abate, HZB. The solar cells produced in this way achieve efficiencies of well above 24 %, which hardly drop under rapid temperature fluctuations between -60 and +80 Celsius over one hundred cycles. That corresponds to about one year of outdoor use.
  • NETZWERKTAG der Allianz für Bauwerkintegrierte Photovoltaik
    NETZWERKTAG der Allianz für Bauwerkintegrierte Photovoltaik
    Der 2. Netzwerktag der Allianz BIPV findet statt am

    10:00 - ca. 16:00 Uhr

    Das HZB, Mitglied in der Allianz BIPV, freut sich, Gastgeber des branchenweiten Austausches zu sein. Neben Praxiserfahrungen von Vertretenden aus Architektur, Fassadenbau und angewandter Forschung steht der direkte Austausch und die Diskussion im Vordergrund.

  • Scientists Develop New Technique to Image Fluctuations in Materials
    Science Highlight
    Scientists Develop New Technique to Image Fluctuations in Materials
    A team of scientists, led by researchers from the Max Born Institute in Berlin and Helmholtz-Zentrum Berlin in Germany and from Brookhaven National Laboratory and the Massachusetts Institute of Technology in the United States has developed a revolutionary new method for capturing high-resolution images of fluctuations in materials at the nanoscale using powerful X-ray sources. The technique, which they call Coherent Correlation Imaging (CCI), allows for the creation of sharp, detailed movies without damaging the sample by excessive radiation. By using an algorithm to detect patterns in underexposed images, CCI opens paths to previously inaccessible information. The team demonstrated CCI on samples made of thin magnetic layers, and their results have been published in Nature.