Ladungstransfer innerhalb von Übergangsmetall-Farbstoffen analysiert

Ein Röntgenpuls untersucht die Delokalisierung von Eisen 3d-Elektronen auf anliegende Liganden.

Ein Röntgenpuls untersucht die Delokalisierung von Eisen 3d-Elektronen auf anliegende Liganden. © M. Künsting/HZB

In farbstoffbasierten Solarzellen sorgen Übergangsmetall-Komplexe dafür, dass Licht in elektrische Energie umgewandelt wird. Bisher ging man davon aus, dass innerhalb des Moleküls eine räumliche Ladungstrennung stattfindet. Dass dies eine zu simple Beschreibung des Prozesses ist, zeigt eine Analyse an BESSY II. Erstmals hat dort ein Team die fundamentalen elektronischen Prozesse rund um das Metallatom und seine Liganden untersucht. Die Arbeit ist in der Fachzeitschrift „Angewandte Chemie, International Edition“ erschienen und stellt das Titelbild.

Organische Solarzellen wie die Grätzel-Zelle bestehen aus Farbstoffen, die auf Übergangsmetall-Komplex-Verbindungen basieren. Sonnenlicht regt die äußeren Elektronen des Komplexes so an, dass sie von Orbitalen am Metallzentrum in Orbitale angrenzender Verbindungen transportiert werden. Bisher ging man davon aus, dass bei diesem Prozess Ladungsträger räumlich getrennt werden, welche dann abgezogen werden, sodass ein elektrischer Strom fließen kann. Dass dies nicht so ist, hat nun ein Team um Alexander Föhlisch am HZB aufklären können.

Mithilfe der kurzen Röntgenpulse von BESSY II im Low-Alpha-Betrieb konnten sie Schritt für Schritt verfolgen, welche Prozesse die Anregung durch Licht (Laserpuls) in einem Eisenkomplex auslöst. „Wir können direkt beobachten, wie der Laserpuls die 3d-Orbitale am Metall entvölkert“, erklärt Raphael Jay, Doktorand und Erstautor der Studie. Mit Hilfe von theoretischen Berechnungen konnten sie die Messdaten aus der zeitaufgelösten Röntgenabsorptions-Spektroskopie sehr genau interpretieren. Dabei ergibt sich folgendes Bild: Der Laserpuls sorgt zunächst tatsächlich dafür, dass Elektronen vom 3d-Orbital des Eisenatoms auf die angrenzenden Liganden delokalisiert werden. Diese Liganden schieben allerdings ihrerseits sofort Ladung zurück in Richtung des Metall-Atoms, wodurch der Verlust elektronischer Ladung am Metall und die damit ursprünglich verbundene Ladungstrennung sofort kompensiert wird.

Diese Erkenntnisse könnten dazu beitragen, neue Materialien für Farbstoffsolarzellen zu entwickeln. Denn bisher werden standardmäßig Ruthenium-Komplexe in organischen Solarzellen verwendet. Ruthenium ist jedoch ein seltenes Element und entsprechend teuer. Eisen-Komplexe wären deutlich billiger, weisen aber hohe Rekombinationsraten auf. Weitere Untersuchungen werden zeigen, worauf es bei Übergangsmetall-Komplexen ankommt, damit Licht effizient in elektrische Energie umgewandelt werden kann.

Covalency-driven preservation of local charge densities in a metal-to-ligand charge-transfer excited iron photosensitizer

Raphael M. Jay, Sebastian Eckert, Vinícius Vaz da Cruz, Mattis Fondell, Rolf Mitzner, and Alexander Föhlisch

Angewandte Chemie International Edition

Doi: 10.1002/anie.201904761

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Science Highlight
    29.04.2025
    Batterieforschung: Alterungsprozesse operando sichtbar gemacht
    Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.
  • Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    Science Highlight
    23.04.2025
    Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
    An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
  • Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Science Highlight
    17.04.2025
    Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
    Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.