Utrafast magnetism: electron-phonon interactions examined at BESSY II

When illuminated by the synchrotron light, nickel emits x-rays itself due to the decay of valence electrons. The number of emitted photons reduces when increasing the temperature from room temperature (left) to 900°C (right).

When illuminated by the synchrotron light, nickel emits x-rays itself due to the decay of valence electrons. The number of emitted photons reduces when increasing the temperature from room temperature (left) to 900°C (right). © HZB

How fast can a magnet switch its orientation and what are the microscopic mechanisms at play ? These questions are of first importance for the development of data storage and computer chips. Now, an HZB team at BESSY II has for the first time been able to experimentally assess the principal microscopic process of ultra-fast magnetism. The methodology developed for this purpose can also be used to investigate interactions between spins and lattice oscillations in graphene, superconductors or other (quantum) materials.

Interactions between electrons and phonons are regarded as the microscopic driving force behind ultrafast magnetization or demagnetization processes (spin-flips). However, it was not possible until now to observe such ultrafast processes in detail due to the absence of suitable methods.

Original new method at BESSY II

Now, a team headed by Prof. Alexander Föhlisch has developed an original method to determine experimentally for the first time the electron-phonon driven spin-flip scattering rate in two model systems: ferromagnetic Nickel and nonmagnetic copper. 

They used X-ray emission spectroscopy (XES) at BESSY II to do this. X-rays excited core electrons in the samples (Ni or Cu) to create the so-called core-holes, which were then filled by the decay of valence electrons. This decay results in the emission of light, which can then be detected and analyzed. The samples were measured at different temperatures to observe the effects of lattice vibrations (phonons) increasing from room temperature to 900 degrees Celsius.

In NIckel: Emissions decrease when the sample is hot

As the temperature increased, ferromagnetic nickel showed a strong decrease in emissions. This observation fits well with the theoretical simulation of processes in the electronic band structure of nickel after excitations: by increasing the temperature and thus, the phonon population, the rate of scattering between electrons and phonons increases. Scattered electrons are no more available for decay, which results in a waning of the light emission. As expected, in the case of diamagnetic copper, the lattice vibrations had hardly any influence on the measured emissions.

"We believe that our article is of high interest not only to specialists in the fields of magnetism, electronic properties of solids and X-ray emission spectroscopy, but also to a broader readership curious about the latest developments in this dynamic field of research," says Dr. Régis Decker, first author and postdoctoral scientist in the Föhlisch team. The method can also be used for the analysis of ultrafast spin flip processes in novel quantum materials such as graphene, superconductors or topological insulators.

 

Scientific Reports, 2019: “Measuring the atomic spin-flip scattering rate by x-ray emission spectroscopy”. Régis Decker, Artur Born, Robby Büchner, Kari Ruotsalainen, Christian Strahlman, Stefan Neppl, Robert Haverkamp, Annette Pietzsch, and Alexander Föhlisch

DOI: 10.1038/s41598-019-45242-8

arö

  • Copy link

You might also be interested in

  • Green fabrication of hybrid materials as highly sensitive X-ray detectors
    Science Highlight
    08.05.2025
    Green fabrication of hybrid materials as highly sensitive X-ray detectors
    New bismuth-based organic-inorganic hybrid materials show exceptional sensitivity and long-term stability as X-ray detectors, significantly more sensitive than commercial X-ray detectors. In addition, these materials can be produced without solvents by ball milling, a mechanochemical synthesis process that is environmentally friendly and scalable. More sensitive detectors would allow for a reduction in the radiation exposure during X-ray examinations.
  • Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    News
    07.05.2025
    Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    The Federal Institute for Materials Research and Testing (BAM), the Helmholtz-Zentrum Berlin (HZB), and Humboldt University of Berlin (HU Berlin) have signed a memorandum of understanding (MoU) to establish the Berlin Battery Lab. The lab will pool the expertise of the three institutions to advance the development of sustainable battery technologies. The joint research infrastructure will also be open to industry for pioneering projects in this field.
  • BESSY II: Insight into ultrafast spin processes with femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Insight into ultrafast spin processes with femtoslicing
    An international team has succeeded at BESSY II for the first time to elucidate how ultrafast spin-polarised current pulses can be characterised by measuring the ultrafast demagnetisation in a magnetic layer system within the first hundreds of femtoseconds. The findings are useful for the development of spintronic devices that enable faster and more energy-efficient information processing and storage. The collaboration involved teams from the University of Strasbourg, HZB, Uppsala University and several other universities.