Ultraschneller Magnetismus: Elektron-Phonon-Wechselwirkungen an BESSY II analysiert

Nach Anregung durch Synchrotronstrahlung (grün) emittiert Nickel Röntgenlicht (gelb). Die Anzahl der emittierten Photonen nimmt jedoch ab, wenn sich die Temperatur von Raumtemperatur (links) auf 900 °C erhöht (rechts).

Nach Anregung durch Synchrotronstrahlung (grün) emittiert Nickel Röntgenlicht (gelb). Die Anzahl der emittierten Photonen nimmt jedoch ab, wenn sich die Temperatur von Raumtemperatur (links) auf 900 °C erhöht (rechts). © HZB

Wie schnell kann ein Magnet seine Ausrichtung ändern und was sind die mikroskopischen Mechanismen? Diese Fragen sind für die Entwicklung von Datenspeichern und Computerchips von größter Bedeutung. Jetzt ist es einem HZB-Team am BESSY II erstmals gelungen, den wichtigsten mikroskopischen Prozess des ultraschnellen Magnetismus experimentell zu beobachten. Die zu diesem Zweck entwickelte Methodik kann auch zur Untersuchung von Wechselwirkungen zwischen Spins und Gitterschwingungen in Graphen, Supraleitern oder anderen (Quanten-)Materialien verwendet werden.

Wechselwirkungen zwischen Elektronen und Gitterschwingungen (Phononen) gelten als die treibende Kraft hinter ultraschnellen Magnetisierungs- oder Entmagnetisierungsprozessen (Spin-Flips). Bisher war es jedoch aufgrund des Fehlens geeigneter Methoden nicht möglich, solche ultraschnellen Prozesse im Detail zu beobachten.

Neue Methode an BESSY II

Nun hat ein Team um Prof. Alexander Föhlisch eine neuartige Methode entwickelt, um erstmals die Spin-Flip-Streurate, die durch Elektron-Phonon-Wechselwirkungen getrieben wird, in zwei Modellsystemen experimentell zu bestimmen: in ferromagnetischems Nickel und nichtmagnetischem Kupfer. 

Nach Anregung Analyse der Emission

Dazu wurde die Röntgen-Emissionsspektroskopie (XES) bei BESSY II eingesetzt. Röntgenstrahlung regt dabei zunächst Elektronen in den Proben (Ni oder Cu) an, so dass „Löcher“ entstehen, die durch Valenzelektronen gefüllt werden können. Wenn Valenzelektronen diese Plätze besetzen, geben sie Licht ab; diese Emission kann dann analysiert werden. Die Proben wurden bei verschiedenen Temperaturen gemessen, um die Auswirkungen der zunehmenden Gitterschwingungen (Phononen) zu beobachten.

Spin-Flip-Streurate hängt nur in Nickel von Phononen ab

Mit steigender Temperatur zeigte ferromagnetisches Nickel einen starken Rückgang der Emissionen. Diese Beobachtung passt gut zu der theoretischen Simulation von Prozessen in der elektronischen Bandstruktur von Nickel nach Anregungen: Durch die Erhöhung der Temperatur und damit der Phononenpopulation steigt die Streurate zwischen Elektronen und Phononen. Gestreute Elektronen stehen für den Zerfall nicht mehr zur Verfügung, was zu einer Abnahme der Lichtemission führt. Wie erwartet, hatten beim diamagnetischen Kupfer die Gitterschwingungen kaum Einfluss auf die gemessenen Emissionen.

"Wir glauben, dass unser Artikel nicht nur für Spezialisten auf den Gebieten Magnetismus, Festkörperphysik und Röntgenemissionsspektroskopie von großem Interesse ist, sondern auch für eine breite Leserschaft, die neugierig auf die neuesten Entwicklungen in diesem dynamischen Forschungsgebiet ist", sagt Dr. Régis Decker, Erstautor und Postdoc im Föhlisch-Team. Das Verfahren kann auch zur Analyse von ultraschnellen Spin-Flip-Prozessen in neuartigen Quantenmaterialien wie Graphen, Supraleitern oder topologischen Isolatoren eingesetzt werden.

Scientific Reports, 2019: “Measuring the atomic spin-flip scattering rate by x-ray emission spectroscopy”. Régis Decker, Artur Born, Robby Büchner, Kari Ruotsalainen, Christian Strahlman, Stefan Neppl, Robert Haverkamp, Annette Pietzsch, and Alexander Föhlisch

DOI: 10.1038/s41598-019-45242-8

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Verleihung des Technologietransfer-Preises 2025
    Nachricht
    07.10.2025
    Verleihung des Technologietransfer-Preises 2025
    Die Verleihung des Technologietransfer-Preises wird am 13. Oktober um 14 Uhr im Hörsaal des BESSY-II-Gebäudes in Adlershof stattfinden.
  • Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Science Highlight
    01.10.2025
    Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Forschende haben erstmals die tatsächlichen Eigenschaften einzelner MXene-Flocken gemessen – einem spannenden neuen Nanomaterial mit Potenzial für bessere Batterien, flexible Elektronik und Geräte für saubere Energie. Mithilfe einer neuartigen lichtbasierten Technik – der spektroskopischen Mikroellipsometrie – haben sie herausgefunden, wie sich MXene auf der Ebene einzelner Flocken verhalten und dabei Veränderungen in der Leitfähigkeit und der optischen Reaktion aufgedeckt, die zuvor bei der Untersuchung gestapelter Schichten verborgen geblieben waren. Dieser Durchbruch liefert grundlegendes Wissen und Werkzeuge für die Entwicklung intelligenterer und effizienterer Technologien auf Basis von MXenen. 
  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.