Accelerator physics: alternative material investigated for superconducting radio-frequency cavity resonators

<p class="MsoCommentText">The photomontage shows a sample of solid, pure niobium before coating (left), and coated with a thin layer of Nb<sub>3</sub>Sn (right).

The photomontage shows a sample of solid, pure niobium before coating (left), and coated with a thin layer of Nb3Sn (right). © HZB

In modern synchrotron sources and free-electron lasers, superconducting radio-frequency cavity resonators are able to supply electron bunches with extremely high energy. These resonators are currently constructed of pure niobium. Now an international collaboration has investigated the potential advantages a niobium-tin coating might offer in comparison to pure niobium.

At present, niobium is the material of choice for constructing superconducting radio-frequency cavity resonators. These will be used in projects at the HZB such as bERLinPro and BESSY-VSR, but also for free-electron lasers such as the XFEL and LCLS-II. However, a coating of niobium-tin (Nb3Sn) could lead to considerable improvements.

Coatings may save money and energy

Superconducting radio-frequency cavity resonators made of niobium must be operated at 2 Kelvin (-271 degrees Celsius), which requires expensive and complicated cryogenic engineering. In contrast, a coating of Nb3Sn might make it possible to operate resonators at 4 Kelvin instead of 2 Kelvin and possibly withstand higher electromagnetic fields without the superconductivity collapsing. In the future, this could save millions of euros in construction and electricity costs for large accelerators, as the cost of cooling would be substantially lower.

Experiments in the USA, Canada, Switzerland and HZB

A team led by Prof. Jens Knobloch, who heads the SRF Institute at HZB, has now carried out tests of superconducting samples coated with Nb3Sn by Cornell University, USA, in collaboration with colleagues from the USA, Canada, and Switzerland. The experiments took place at the Paul Scherrer Institute, Switzerland, at TRIUMF, Canada, and the HZB.

“We measured the critical magnetic field strengths of superconducting Nb3Sn samples in both static and radio-frequency fields”, says Sebastian Keckert, first author of the study, who is doing his doctorate as part of the Knobloch team. By combining different measurement methods, they were able to confirm the theoretical prediction that the critical magnetic field of Nb3Sn in radio-frequency fields is higher than that for static magnetic fields. However, the coated material should display a very much higher critical magnetic field level in a radio-frequency field. Thus, the tests have also shown that the coating process used currently for the production of Nb3Sn might be improved upon in order to more closely approach the theoretical values.

The publication has been mentioned on the Cover of „Superconductor Science and Technology“ , (2019): Critical fields of Nb3Sn prepared for superconducting cavities; S. Keckert, T. Junginger, T. Buck, D. Hall, P. Kolb, O. Kugeler, R. Laxdal, M. Liepe, S. Posen , T. Prokscha, Z. Salman, A. Suter and J. Knobloch.

doi:10.1088/1361-6668/ab119e

arö

  • Copy link

You might also be interested in

  • The future of corals – what X-rays can tell us
    Interview
    12.11.2025
    The future of corals – what X-rays can tell us
    This summer, it was all over the media. Driven by the climate crisis, the oceans have now also passed a critical point, the absorption of CO2 is making the oceans increasingly acidic. The shells of certain sea snails are already showing the first signs of damage. But also the skeleton structures of coral reefs are deteriorating in more acidic conditions. This is especially concerning given that corals are already suffering from marine heatwaves and pollution, which are leading to bleaching and finally to the death of entire reefs worldwide. But how exactly does ocean acidification affect reef structures?

    Prof. Dr. Tali Mass, a marine biologist from the University of Haifa, Israel, is an expert on stony corals. Together with Prof. Dr. Paul Zaslansky, X-ray imaging expert from Charité Berlin, she investigated at BESSY II the skeleton formation in baby corals, raised under different pH conditions. Antonia Rötger spoke online with the two experts about the results of their recent study and the future of coral reefs.

  • Long-term stability for perovskite solar cells: a big step forward
    Science Highlight
    07.11.2025
    Long-term stability for perovskite solar cells: a big step forward
    Perovskite solar cells are inexpensive to produce and generate a high amount of electric power per surface area. However, they are not yet stable enough, losing efficiency more rapidly than the silicon market standard. Now, an international team led by Prof. Dr. Antonio Abate has dramatically increased their stability by applying a novel coating to the interface between the surface of the perovskite and the top contact layer. This has even boosted efficiency to almost 27%, which represents the state-of-the-art. After 1,200 hours of continuous operation under standard illumination, no decrease in efficiency was observed. The study involved research teams from China, Italy, Switzerland and Germany and has been published in Nature Photonics.
  • Energy of charge carrier pairs in cuprate compounds
    Science Highlight
    05.11.2025
    Energy of charge carrier pairs in cuprate compounds
    High-temperature superconductivity is still not fully understood. Now, an international research team at BESSY II has measured the energy of charge carrier pairs in undoped La₂CuO₄. Their findings revealed that the interaction energies within the potentially superconducting copper oxide layers are significantly lower than those in the insulating lanthanum oxide layers. These results contribute to a better understanding of high-temperature superconductivity and could also be relevant for research into other functional materials.