Traditionsreiche HZB-Neutronenschule wird an ANSTO in Australien weitergeführt

Die Neutronenschule am ANSTO in Kooperation mit HZB-Expertinnen konnte den Teilnehmenden viel Wissen vermitteln.

Die Neutronenschule am ANSTO in Kooperation mit HZB-Expertinnen konnte den Teilnehmenden viel Wissen vermitteln. © ANSTO

Diesen Sommer haben Forscherinnen und Forscher an der australischen Neutronenquelle ACNS bei Australia’s Nuclear Science and Technology Organisation ANSTO eine gemeinsame Neutronenschule organisiert. Die HZB-ANSTO Neutronenschule soll künftig alle zwei Jahre stattfinden. 

Die erste gemeinsame HZB-ANSTO Neutronenschule fand vom 23. - 28.  Juni 2019 am ANSTO statt. Aus dem HZB hatten Prof. Dr. Bella Lake und Prof. Dr. Susan Schorr mehrere Vorlesungen übernommen. Das Interesse an der Neutronenschule war sehr groß, aus 60 Bewerbungen wurden 24 Teilnehmende ausgesucht. Neben Vorlesungen gab es insbesondere auch praktische Trainings an drei Instrumenten der Neutronenquelle ACNS bei ANSTO.

„Wir haben uns bei der Konzeption von der umfassenden Ausbildung der Neutronenschule in Berlin, am HZB, inspirieren lassen“, sagte Dr. Helen Maynard-Casely, eine der Organisatorinnen bei ANSTO.  Künftig werde ein zweijähriger Rhythmus angedacht, möglicherweise auch mit unterschiedlichen Schwerpunkten, zum Beispiel für Ingenieure.

Kurz vor Beginn der Neutronenschule konnte das Instrument SPATZ an der ACNS den Betrieb aufnehmen. SPATZ stammt ursprünglich aus der Berliner Neutronenquelle BER II und trug am HZB den Namen BioRef. Das Instrument ermöglicht einzigartige Einblicke in Energiematerialien, weiche Materie und biomedizinische Fragestellungen. Es wurde nach Australien transferiert, um auch nach Abschaltung des BER II der Forschung zur Verfügung zu stehen.

In einem kurzen Video berichtet ANSTO über den Transfer und den Aufbau von SPATZ.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Nachricht
    12.11.2025
    Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Dr. Susanne Nies leitet am HZB das Projekt Green Deal Ukraina, das den Aufbau eines nachhaltigen Energiesystems in der Ukraine unterstützt. Die Energieexpertin wurde nun auch in die wissenschaftliche Beratergruppe der Europäischen Kommission berufen, um im Zusammenhang mit der Netto-Null-Zielsetzung (DG GROW) regulatorische Belastungen aufzuzeigen und dazu zu beraten.
  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.
  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in Phosphor nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.