Traditionsreiche HZB-Neutronenschule wird an ANSTO in Australien weitergeführt
Die Neutronenschule am ANSTO in Kooperation mit HZB-Expertinnen konnte den Teilnehmenden viel Wissen vermitteln. © ANSTO
Diesen Sommer haben Forscherinnen und Forscher an der australischen Neutronenquelle ACNS bei Australia’s Nuclear Science and Technology Organisation ANSTO eine gemeinsame Neutronenschule organisiert. Die HZB-ANSTO Neutronenschule soll künftig alle zwei Jahre stattfinden.
Die erste gemeinsame HZB-ANSTO Neutronenschule fand vom 23. - 28. Juni 2019 am ANSTO statt. Aus dem HZB hatten Prof. Dr. Bella Lake und Prof. Dr. Susan Schorr mehrere Vorlesungen übernommen. Das Interesse an der Neutronenschule war sehr groß, aus 60 Bewerbungen wurden 24 Teilnehmende ausgesucht. Neben Vorlesungen gab es insbesondere auch praktische Trainings an drei Instrumenten der Neutronenquelle ACNS bei ANSTO.
„Wir haben uns bei der Konzeption von der umfassenden Ausbildung der Neutronenschule in Berlin, am HZB, inspirieren lassen“, sagte Dr. Helen Maynard-Casely, eine der Organisatorinnen bei ANSTO. Künftig werde ein zweijähriger Rhythmus angedacht, möglicherweise auch mit unterschiedlichen Schwerpunkten, zum Beispiel für Ingenieure.
Kurz vor Beginn der Neutronenschule konnte das Instrument SPATZ an der ACNS den Betrieb aufnehmen. SPATZ stammt ursprünglich aus der Berliner Neutronenquelle BER II und trug am HZB den Namen BioRef. Das Instrument ermöglicht einzigartige Einblicke in Energiematerialien, weiche Materie und biomedizinische Fragestellungen. Es wurde nach Australien transferiert, um auch nach Abschaltung des BER II der Forschung zur Verfügung zu stehen.
In einem kurzen Video berichtet ANSTO über den Transfer und den Aufbau von SPATZ.
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=20628;sprache=de/
- Link kopieren
-
BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
-
Ein innerer Kompass für Meereslebewesen im Paläozän
Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
-
Was vibrierende Moleküle über die Zellbiologie verraten
Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.