Mit Mathe Zeit sparen: Design-Werkzeug für korkenzieherförmige Nano-Antennen

Die Nano-Antennen werden im Elektronenmikroskop mit direktem Elektronenstrahlschreiben erzeugt.

Die Nano-Antennen werden im Elektronenmikroskop mit direktem Elektronenstrahlschreiben erzeugt. © HZB

Erstmals hat ein HZB-Team mathematisch exakt formuliert, wie korkenzieherförmige Nano-Antennen mit Licht wechselwirken. Mit dem mathematischen Werkzeug lässt sich die jeweils geeignete Geometrie berechnen, die eine Nano-Antenne für konkrete Anwendungen in der Sensorik oder in der Informationstechnologie besitzen muss.

Die Nanostrukturen aus dem HZB-Team um Katja Höflich sind wie Korkenzieher geformt, sie bestehen aus Silber und sind etwa 100 Nanometer dick. Mathematisch lässt sich jede Nano-Antenne als nahezu eindimensionale Linie betrachten, die zu einer Helix verschraubt ist und durch Parameter wie Durchmesser, Länge, Windungszahl und Drehsinn der Helix gekennzeichnet werden kann.

Anwendungen in der IT oder Sensorik

Die Nano-Korkenzieher reagieren hochempfindlich auf Licht: Je nach Frequenz und Polarisationsrichtung können sie es extrem verstärken. Weil helixförmige Antennen eine Händigkeit (Chiralität) aufweisen, können sie Lichtquanten entsprechend ihrer Händigkeit, also ihrem Spin, auswählen. Dadurch ergeben sich neuartige Anwendungen in der Informationstechnologie, die auf der Spinquantenzahl von Licht basieren. Eine weitere Anwendung kann in der Sensorik liegen: Helix-förmige Nano-Antennen könnten hochempfindlich auf bestimmte chirale Verbindungen (Moleküle, die eine Händigkeit besitzen) reagieren, bis hin zum Nachweis einzelner Moleküle.   

Bislang: Numerische Modellierung

Üblicherweise wird die Wechselwirkung solcher Nano-Antennen mit einem elektromagnetischen Feld mit numerischen Methoden mit hoher Genauigkeit bestimmt. Jede neue Geometrie erfordert jedoch eine neue aufwendige Berechnung.

Jetzt: Eine Formel als Design-Werkzeug

Das Team um Höflich hat das Problem jetzt erstmals mathematisch exakt gelöst. „Wir haben nun eine Formel, die uns sagt, wie eine Nano-Antenne mit bestimmten Parametern auf Licht reagiert“, sagt Höflich. Diese analytische Beschreibung lässt sich als Design-Werkzeug nutzen: Denn sie besagt auch, wie eine Nano-Helix beschaffen sein muss, um elektromagnetische Felder bestimmter Frequenzen oder Polarisationsrichtungen zu verstärken.

Die realen Nano-Antennen konnten die HZB-Forscher in einem Elektronenmikroskop aus dem CCMS-Corelab des HZB mit dem Verfahren des direkten Elektronenstrahlschreibens erzeugen. Der Elektronenstrahl schreibt dafür Punkt für Punkt zunächst eine Kohlenstoffstruktur, die die Form einer Helix besitzt. Im Anschluss wird diese Struktur mit Silber beschichtet. Die gemessenen optischen Eigenschaften dieser Silber-Nano-Antennen stimmten mit den Berechnungen gut überein.

Optica (2019, Vol. 6, Issue 9): “Resonant behavior of a single plasmonic helix“; Katja Höflich, Thorsten Feichtner, Enno Hansjürgen, Caspar Haverkamp, Heiko Kollmann, Christoph Lienau, Martin Siles.

 

DOI: 10.1364/OPTICA.6.001098

arö


Das könnte Sie auch interessieren

  • Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Science Highlight
    17.04.2024
    Einfachere Herstellung von anorganischen Perowskit-Solarzellen bringt Vorteile
    Anorganische Perowskit-Solarzellen aus CsPbI3 sind langzeitstabil und erreichen gute Wirkungsgrade. Ein Team um Prof. Antonio Abate hat nun an BESSY II Oberflächen und Grenzflächen von CsPbI3 -Schichten analysiert, die unter unterschiedlichen Bedingungen produziert wurden. Die Ergebnisse belegen, dass das Ausglühen in Umgebungsluft die optoelektronischen Eigenschaften des Halbleiterfilms nicht negativ beeinflusst, sondern sogar zu weniger Defekten führt. Dies könnte die Massenanfertigung von anorganischen Perowskit-Solarzellen weiter vereinfachen.
  • Spintronik: Ein neuer Weg zu wirbelnden Spin-Texturen bei Raumtemperatur
    Science Highlight
    16.04.2024
    Spintronik: Ein neuer Weg zu wirbelnden Spin-Texturen bei Raumtemperatur
    Ein Team am HZB hat an BESSY II eine neue, einfache Methode untersucht, mit der sich stabile radiale magnetische Wirbel in magnetischen Dünnschichten erzeugen lassen.
  • BESSY II: Wie das gepulste Laden die Lebensdauer von Batterien verlängert
    Science Highlight
    08.04.2024
    BESSY II: Wie das gepulste Laden die Lebensdauer von Batterien verlängert
    Ein verbessertes Ladeprotokoll könnte die Lebensdauer von Lithium-Ionen-Batterien deutlich verlängern. Das Laden mit hochfrequentem gepulstem Strom verringert Alterungseffekte. Dies zeigte ein internationales Team unter der Leitung von Philipp Adelhelm (HZB und Humboldt-Universität) in Zusammenarbeit mit der Technischen Universität Berlin und der Aalborg University in Dänemark. Besonders aufschlussreich waren Experimente an der Röntgenquelle BESSY II.