Nanopartikel in Lithium-Schwefel-Akkus mit Neutronen aufgespürt

Diese am HZB selbstentwickelte Messzelle ermöglicht es, die Batteriezelle in "operando" zu analysieren.

Diese am HZB selbstentwickelte Messzelle ermöglicht es, die Batteriezelle in "operando" zu analysieren. © S. Risse/HZB

Ein HZB-Team hat erstmals mit Hilfe von Neutronenexperimenten präzise analysiert, wie und wo sich Nanopartikel aus Lithiumsulfid und Schwefel im Lauf der Ladezyklen an den Batterie-Elektroden abscheiden. Die Ergebnisse können dazu beitragen, die Lebensdauer von Lithium-Schwefel-Akkus zu erhöhen.

Lithium-Schwefel-Akkus gelten als vielversprechende Kandidaten für die nächste Generation von Energiespeichern. Sie besitzen eine theoretische gravimetrische Energiedichte, die fünfmal höher ist als die der derzeit besten Lithium-Ionen-Akkumulatoren. Und sie funktionieren sogar bei Minusgraden bis -50 °C. Außerdem ist Schwefel preiswert und umweltfreundlich. Allerdings sinkt bislang mit jedem Lade-Entladezyklus die Kapazität stark ab, sodass solche Batterien noch nicht langlebig sind.

Kapazitätsverlust durch Reaktionsprodukte

Der Kapazitätsverlust wird durch komplizierte Reaktionsprozesse an den Elektroden im Inneren der Batteriezelle verursacht. Daher ist es besonders wichtig, die Abscheidung und das Auflösen des Lade- (Schwefel) und Entladeproduktes (Lithiumsulfid) genau zu verstehen. Während sich Schwefel makroskopisch abscheidet und sich daher mit bildgebenden Verfahren oder Röntgenbeugung sehr gut während des Zyklierens untersuchen lässt, ist Lithiumsulfid aufgrund einer Partikelgröße im sub-10-nm-Bereich nur schwer zu detektieren.

Neutronen zeigen, wo sich die Nanopartikel ablagern

Diesen Einblick liefern nun erstmals Untersuchungen an der Neutronenquelle BER II am HZB. Dr. Sebastian Risse hat mithilfe einer selbst entwickelten Messzelle Lithium-Schwefel-Batterien während der Lade- und Entladezyklen (operando) mit Neutronen durchleuchtet und zeitgleich weitere Messungen (Impedanzspektroskopie) durchgeführt.

Dadurch konnte er mit seinem Team das Auflösen und Abscheiden von Lithiumsulfid während zehn Entlade/Ladezyklen sehr genau analysieren. Da Neutronen stark mit Deuterium (schwerer Wasserstoff) wechselwirken, verwendeten die Forscher in der Batteriezelle ein deuteriertes Elektrolyt, um die beiden festen Produkte Schwefel und Lithiumsulfid sichtbar zu machen.

Überraschendes Ergebnis

Das Fazit der Forscher: „Wir sehen, dass die Lithiumsulfid- oder Schwefelabscheidungen nicht im Inneren der mikroporösen Kohlenstoffelektroden stattfinden, sondern auf der äußeren Oberfläche der Kohlenstofffasern“, sagt Risse. Diese Ergebnisse geben wertvolle Hinweise für die Entwicklung besserer Batterieelektroden.

Die Studie ist publiziert in ACS Nano, (2019): Operando Analysis of a Lithium/Sulfur Battery by Small Angle Neutron Scattering. Sebastian Risse, Eneli Härk, Ben Kent and Matthias Ballauff

DOI: http://dx.doi.org/10.1021/acsnano.9b03453

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Sasol und HZB vertiefen Zusammenarbeit mit Fokus auf Digitalisierung
    Nachricht
    08.10.2025
    Sasol und HZB vertiefen Zusammenarbeit mit Fokus auf Digitalisierung
    Sasol Research & Technology und das Helmholtz-Zentrum Berlin (HZB) erweitern ihre Partnerschaft auf den Bereich der Digitalisierung. Dabei bauen sie auf gemeinsamen Anstrengungen im Rahmen des CARE-O-SENE-Projekts und einer Anfang 2025 ins Leben gerufenen Industrial Fellowship auf. Die neue Initiative ist ein Schritt vorwärts bei der Nutzung digitaler Technologien, um Innovation bei Katalysatoren zu beschleunigen und die  wissenschaftliche Zusammenarbeit zu vertiefen.
  • Verleihung des Technologietransfer-Preises 2025
    Nachricht
    07.10.2025
    Verleihung des Technologietransfer-Preises 2025
    Die Verleihung des Technologietransfer-Preises wird am 13. Oktober um 14 Uhr im Hörsaal des BESSY-II-Gebäudes in Adlershof stattfinden.
  • Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Science Highlight
    01.10.2025
    Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Forschende haben erstmals die tatsächlichen Eigenschaften einzelner MXene-Flocken gemessen – einem spannenden neuen Nanomaterial mit Potenzial für bessere Batterien, flexible Elektronik und Geräte für saubere Energie. Mithilfe einer neuartigen lichtbasierten Technik – der spektroskopischen Mikroellipsometrie – haben sie herausgefunden, wie sich MXene auf der Ebene einzelner Flocken verhalten und dabei Veränderungen in der Leitfähigkeit und der optischen Reaktion aufgedeckt, die zuvor bei der Untersuchung gestapelter Schichten verborgen geblieben waren. Dieser Durchbruch liefert grundlegendes Wissen und Werkzeuge für die Entwicklung intelligenterer und effizienterer Technologien auf Basis von MXenen.