New sample holder for protein crystallography
Up to three indivudal drops may be placed onto the sample holder. © HZB
24 sample holders are grouped. © HZB
After their formation the tiny crystals are prepared for x-ray analysis - without touching them. They stay onto the same sample holder. © HZB
An HZB research team has developed a novel sample holder that considerably facilitates the preparation of protein crystals for structural analysis. A short video by the team shows how proteins in solution can be crystallised directly onto the new sample holders themselves, then analysed using the MX beamlines at BESSY II. A patent has already been granted and a manufacturer found.
Proteins are huge molecules that often have complex three-dimensional structure and morphology that can include side chains, folds, and twists. This three-dimensional shape is often the determining factor of their function in organisms. It is therefore important to understand the structure of proteins both for fundamental research in biology and for the development of new drugs. To accomplish this, proteins are first precipitated from solution as tiny crystals, then analysed using facilities such as the MX beamlines at BESSY II in order to generate a computer image of the macromolecular structure from the data.
Up to now, protein crystals have first been grown and then transferred onto a sample holder for structural analysis. However, this transfer entailed a risk of destroying the often extremely fragile crystals.
This risk is no longer necessary thanks to the new sample holder developed by Dr. Manfred Weiss and Dr. Christian Feiler from the MX team together with Dr. Dirk Wallacher from the BESSY II sample environment group. Instead, the protein solution is applied directly onto the sample holder and crystallised in place, eliminating the need to transfer the delicate protein crystals to a different sample holder for analysis. “The new sample holder saves work steps and reduces the risk of damaging the sensitive protein crystals“, explains Feiler. “We have a short video clip that shows step-by-step how these sample holders facilitate protein crystallography – you have to see this!” exclaims Weiss, head of the MX-Beamline.
In practice, a large number of samples are always measured at once, so 24 sample holders are grouped together onto one sample plate. The new sample holder is patented in Germany and registered for an international patent. Jena Bioscience has acquired a licence and is already marketing the new development worldwide.
Published in J. Vis. Exp. (2019): An All-in-one Sample Holder for Macromolecular X-ray Crystallography with Minimal Background Scattering. Christian G. Feiler, Dirk Wallacher, Manfred S. Weiss
doi:10.3791/59722
Video and publication
S. Furtak/red.
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=20771;sprache=en
- Copy link
-
BESSY II: Phosphorous chains – a 1D material with 1D electronic properties
For the first time, a team at BESSY II has succeeded in demonstrating the one-dimensional electronic properties of a material through a highly refined experimental process. The samples consisted of short chains of phosphorus atoms that self-organise at specific angles on a silver substrate. Through sophisticated analysis, the team was able to disentangle the contributions of these differently aligned chains. This revealed that the electronic properties of each chain are indeed one-dimensional. Calculations predict an exciting phase transition to be expected as soon as these chains are more closely packed. While material consisting of individual chains with longer distances is semiconducting, a very dense chain structure would be metallic.
-
Did marine life in the palaeocene use a compass?
Some ancient marine organisms produced mysterious magnetic particles of unusually large size, which can now be found as fossils in marine sediments. An international team has succeeded in mapping the magnetic domains on one of such ‘giant magnetofossils’ using a sophisticated method at the Diamond X-ray source. Their analysis shows that these particles could have allowed these organisms to sense tiny variations in both the direction and intensity of the Earth’s magnetic field, enabling them to geolocate themselves and navigate across the ocean. The method offers a powerful tool for magnetically testing whether putative biological iron oxide particles in Mars samples have a biogenic origin.
-
What vibrating molecules might reveal about cell biology
Infrared vibrational spectroscopy at BESSY II can be used to create high-resolution maps of molecules inside live cells and cell organelles in native aqueous environment, according to a new study by a team from HZB and Humboldt University in Berlin. Nano-IR spectroscopy with s-SNOM at the IRIS beamline is now suitable for examining tiny biological samples in liquid medium in the nanometre range and generating infrared images of molecular vibrations with nanometre resolution. It is even possible to obtain 3D information. To test the method, the team grew fibroblasts on a highly transparent SiC membrane and examined them in vivo. This method will provide new insights into cell biology.