Dynamic pattern of Skyrmions observed

The illustration demonstrates skyrmions in one of their Eigen modes (clockwise).

The illustration demonstrates skyrmions in one of their Eigen modes (clockwise). © Yotta Kippe/HZB

Tiny magnetic vortices known as skyrmions form in certain magnetic materials, such as Cu2OSeO3. These skyrmions can be controlled by low-level electrical currents – which could facilitate more energy-efficient data processing. Now a team has succeeded in developing a new technique at the VEKMAG station of BESSY II for precisely measuring these vortices and observing their three different predicted characteristic oscillation modes (Eigen modes).

Cu2OSeO3 is a material with unusual magnetic properties. Magnetic spin vortices known as skyrmions are formed within a certain temperature range when in the presence of a small external magnetic field. Currently, moderately low temperatures of around 60 Kelvin (-213 degrees Celsius) are required to stabilise their phase, but it appears possible to shift this temperature range to room temperature. The exciting thing about skyrmions is that they can be set in motion and controlled very easily, thus offering new opportunities to reduce the energy required for data processing.

Three different Eigenmodes expected

Theoretical work had predicted that it should be possible to use a high-frequency electric field to  excite a group of skyrmions in the sample so that their cores will  rotate all together,  synchronously like a fish swarm, clockwise or counter-clockwise, or alternatively they can even exhibit a “breathing” motion.  Now a team has succeeded in measuring the dynamics of these skyrmions in detail using a single-crystal sample of Cu2OSeO3.

First experimental observation at VEKMAG

The team succeeded at BESSY II in combining a spin-resolving method with an external microwave field. „The resonant magnetic scattering technique when combined with magnetic vectorial external fields shows where the spins are located in the lattice and how they are oriented in space, and all these for each elemental spin species that may exist in the specimen“,  explains Dr. Florin Radu, at the Helmholtz-Zentrum Berlin (HZB),  a physicist who developed and set up the VEKMAG end station in cooperation with partners from the Universität Regensburg, Ruhr University Bochum, and Freie Universität Berlin. The construction and continuing development of the VEKMAG station are supported by the German Federal Ministry of Education and Research (BMBF) and HZB.

Using electric field induced ferromagnetic resonance excitation and recording the x-ray intensity  of a  so called Bragg peak, the research group demonstrated experimentally for the first time that all three characteristic oscillation modes occur in Cu2OSeO3 – the team observed magnetic skyrmions turning clockwise, counterclockwise, and expanding and contracting ("breathing" mode). Those modes can be switched and turned around by changing the frequency of the microwave field: Each dynamic mode is achieved for a certain frequency, which further depends on the external magnetic field as well as on other intrinsic parameters of the sample. “This is a first step towards phase specific characterization of controlled skyrmion’s gyrational motion”, Radu says.

Phys. Rev. Lett. (2019): Ferromagnetic Resonance with Magnetic Phase Selectivity by Means of Resonant Elastic X-Ray Scattering on a Chiral Magnet; S. Pöllath, A. Aqeel, A. Bauer, C. Luo, H. Ryll, F. Radu, C. Pfleiderer, G. Woltersdorf, and C. H. Back

DOI:    10.1103/PhysRevLett.123.167201

arö

  • Copy link

You might also be interested in

  • Green fabrication of hybrid materials as highly sensitive X-ray detectors
    Science Highlight
    08.05.2025
    Green fabrication of hybrid materials as highly sensitive X-ray detectors
    New bismuth-based organic-inorganic hybrid materials show exceptional sensitivity and long-term stability as X-ray detectors, significantly more sensitive than commercial X-ray detectors. In addition, these materials can be produced without solvents by ball milling, a mechanochemical synthesis process that is environmentally friendly and scalable. More sensitive detectors would allow for a reduction in the radiation exposure during X-ray examinations.
  • Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    News
    07.05.2025
    Electrical energy storage: BAM, HZB, and HU Berlin plan joint Berlin Battery Lab
    The Federal Institute for Materials Research and Testing (BAM), the Helmholtz-Zentrum Berlin (HZB), and Humboldt University of Berlin (HU Berlin) have signed a memorandum of understanding (MoU) to establish the Berlin Battery Lab. The lab will pool the expertise of the three institutions to advance the development of sustainable battery technologies. The joint research infrastructure will also be open to industry for pioneering projects in this field.
  • BESSY II: Insight into ultrafast spin processes with femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Insight into ultrafast spin processes with femtoslicing
    An international team has succeeded at BESSY II for the first time to elucidate how ultrafast spin-polarised current pulses can be characterised by measuring the ultrafast demagnetisation in a magnetic layer system within the first hundreds of femtoseconds. The findings are useful for the development of spintronic devices that enable faster and more energy-efficient information processing and storage. The collaboration involved teams from the University of Strasbourg, HZB, Uppsala University and several other universities.