„Tanzmuster“ von Skyrmionen vermessen

Die Illustration zeigt Sykrmionen in einer ihrer Eigenschwingungen. Hier drehen sie im Uhrzeigersinn.

Die Illustration zeigt Sykrmionen in einer ihrer Eigenschwingungen. Hier drehen sie im Uhrzeigersinn. © Yotta Kippe/HZB

In bestimmten magnetischen Materialien wie Cu2OSeO3 entstehen magnetische Wirbel, so genannte Skyrmionen. Diese Skyrmionen lassen sich durch niedrige elektrische Ströme kontrollieren, was eine energiesparende Datenverarbeitung ermöglichen könnte. Nun ist es einem Team gelungen, an der VEKMAG-Station an BESSY II eine neue Technik zu entwickeln, um diese Wirbel präzise zu vermessen und dabei die drei unterschiedlichen Eigenschwingungen zu beobachten.

Cu2OSeO3 ist ein Material mit besonderen magnetischen Eigenschaften. So bilden sich in einem bestimmten Temperaturbereich bei einem kleinen äußeren Magnetfeld so genannte Skyrmionen: magnetische Spinwirbel. Aktuell sind dafür moderat tiefe Temperaturen um die 60 Kelvin (-213 Grad Celsius) erforderlich, es scheint aber möglich zu sein, diesen Temperaturbereich auch in die Raumtemperatur zu verschieben. Das Spannende an Skyrmionen ist, dass sie sich sehr leicht bewegen und kontrollieren lassen und damit neue Möglichkeiten für eine energiesparende Datenverarbeitung bieten.

Drei Eigenschwingungen erwartet

Theoretische Arbeiten hatten vorausgesagt, dass es möglich sein sollte, mit einem elektrischen Hochfrequenzfeld Skyrmionen in der Probe gemeinsam und synchron anzuregen: so könnten sich die Skyrmionen entweder alle gemeinsam im oder gegen den Uhrzeigersinn drehen oder aber „atmen“, indem sie sich ausdehnen und wieder zusammenziehen. Nun ist es einem Team gelungen, in einer einkristallinen Probe von Cu2OSeO3 die Dynamik dieser Skyrmionen im Detail zu vermessen.

Nachweis an der VEKMAG-Station an BESSY II

An BESSY II gelang es ihnen, eine spinauflösende Methode mit einem äußeren Mikrowellenfeld zu kombinieren: „So konnten wir die Spins und ihre Ausrichtung präzise kartieren, und zwar für jede Sorte von Spins, die in der Probe vorhanden ist“, erläutert der HZB-Physiker Dr. Florin Radu, der gemeinsam mit Kooperationspartnern aus den Universitäten Regensburg, der Ruhr Universität Bochum sowie der Freien Universität Berlin die VEKMAG-Station aufgebaut hat. Aufbau und Fortentwicklung der VEKMAG-Station werden durch das BMBF und das HZB gefördert. 

Durch ferromagnetische Resonanzexperimente an einem so genannten Bragg-Peak zeigte die Forschergruppe damit erstmals experimentell, dass sich alle drei Eigenschwingungen in Cu2OSeO3 ausbilden: Sie beobachteten magnetische Wirbel in drei unterschiedlichen, synchronen Bewegungsmustern, die sich mit dem Uhrzeigersinn oder gegen den Uhrzeigersinn drehen oder sich „atmend“ ausdehnen und zusammenziehen.

Kontrolle durch Mikrowellen

Jedes Bewegungsmuster wird bei einer bestimmten Frequenz des Mikrowellenfeldes erreicht, die vom äußeren Magnetfeld sowie von intrinsischen Parametern der Probe abhängt. Mit Hilfe des Mikrowellenfeldes sind somit Übergänge von einer Eigenschwingung in eine andere möglich. "Das ist ein erster Schritt zur Kontrolle von Skyrmionen", sagt Radu.

Phys. Rev. Lett. (2019): Ferromagnetic Resonance with Magnetic Phase Selectivity by Means of Resonant Elastic X-Ray Scattering on a Chiral Magnet; S. Pöllath, A. Aqeel, A. Bauer, C. Luo, H. Ryll, F. Radu, C. Pfleiderer, G. Woltersdorf, and C. H. Back

DOI:  10.1103/PhysRevLett.123.167201

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • MXene als Wasserstoff-Speicher: Auf die Diffusionsprozesse kommt es an
    Science Highlight
    23.06.2025
    MXene als Wasserstoff-Speicher: Auf die Diffusionsprozesse kommt es an
    Für die Speicherung von Wasserstoff sind 2D-Materialien wie MXene von großem Interesse. Ein Experte aus dem HZB hat die Diffusion von Wasserstoff in MXene mittels Dichtefunktionaltheorie untersucht. Die Modellierungen liefern Einblicke in die wichtigsten Diffusionsmechanismen und die Wechselwirkung von Wasserstoff mit Ti3C2 MXene und liefern eine belastbare Grundlage für experimentelle Untersuchungen.
  • Forschung ganz nah! Die Lange Nacht der Wissenschaften am HZB
    Nachricht
    20.06.2025
    Forschung ganz nah! Die Lange Nacht der Wissenschaften am HZB
    Am 28. Juni ist es wieder so weit: Die Lange der Wissenschaften findet von 17 - 0 Uhr in Berlin und auch in Adlershof statt. Werfen Sie einen Blick hinter die Kulissen unserer spannenden Forschung!
  • MAX IV und BESSY II treiben Materialwissenschaften gemeinsam voran
    Nachricht
    17.06.2025
    MAX IV und BESSY II treiben Materialwissenschaften gemeinsam voran
    Das schwedische Synchrotron-Labor MAX IV und das Helmholtz-Zentrum Berlin (HZB) mit der Synchrotronstrahlungsquelle BESSY II haben am 16. Juni eine Kooperationsvereinbarung mit fünfjähriger Laufzeit unterzeichnet. Sie schafft den Rahmen für eine verstärkte Zusammenarbeit bei der operativen und technologischen Entwicklung in den Bereichen Beschleunigerforschung und -entwicklung, Strahlführungen und Optik, Experimentierstationen und Probenumgebungen sowie Digitalisierung und Datenwissenschaft.