Krebsforschung an BESSY II: Bindungsmechanismen von therapeutischen Substanzen entschlüsselt

Auf dem Cover kündigt die Zeitschrift Chemmedchem die Arbeit an.

Auf dem Cover kündigt die Zeitschrift Chemmedchem die Arbeit an. © Chemmedchem/VCH Wiley

In Tumorzellen ist die DNA im Vergleich zu normalen Körperzellen verändert. Wie solche Veränderungen verhindert oder gehemmt werden können, ist ein spannendes Forschungsgebiet mit großer Relevanz für die Entwicklung von Krebsbehandlungen. Ein interdisziplinäres Team hat nun durch Proteinkristallographie an BESSY II die möglichen  Bindungsmechanismen von bestimmten therapeutischen Substanzen aus der Gruppe der Tetrazolhydrazide an ein entscheidendes Protein in der Zelle analysiert.

Bestimmte Proteine wie die Humanen Histon-Demethylasen, darunter auch das Protein KDM4, spielen eine Rolle bei der Entstehung von Tumorzellen. Sie binden an die DNA und verändern sie, so dass die Zelle krebsartig werden kann. Für eine Therapie sind Wirkstoffe interessant, die solche Veränderungen hemmen oder sogar rückgängig machen können.

Der Biochemiker Prof. Dr. Udo Heinemann vom Max-Delbrück Centrum in Berlin-Buch untersucht solche Prozesse. Nun hat er in Zusammenarbeit mit Chemikern um Prof. Dr. Andreas Link von der Uni Greifswald und dem Team um Dr. Manfred Weiss am HZB untersucht, wie und an welchen Stellen bestimmte therapeutische Substanzen aus der Gruppe der Tetrazolhydrazide an diese Proteinmoleküle andocken und so ihre schädliche Wirkung hemmen.

KDM4-Proteinkristalle in Wirkstofflösungen getränkt

Link stellte zunächst Variationen von Tetrazolhydrazid-Substanzen her. Für die Strukturanalyse mussten Kristalle aus KDM4-Proteinen gezüchtet werden – eine schwierige Aufgabe, die Dr. Piotr Malecki und Manfred Weiss am HZB übernommen hatten. Die KDM4-Proteinkristalle wurden im Anschluss in jeweils einer bestimmten Substanz getränkt, bevor sie an den MX-Beamlines von BESSY II mit starkem Röntgenlicht analysiert wurden. Eine verfeinerte Auswertung zeigte nicht nur die dreidimensionale Architektur des KDM4-Proteins, sondern auch, wo genau an dem KDM4-Molekül die aktiven Substanzen angedockt hatten.

Wirkstoff-Design

„Diese Klasse von Substanzen wurde bislang noch nicht strukturell untersucht“, erklärt Manfred Weiss.  Und Udo Heinemann vom MDC führt aus: „Wir werden nun auswerten, wo es Chancen gibt, innerhalb der 3D-Struktur des KDM4 noch stärker anzudocken. Dann können wir möglicherweise auch Wirkstoffe entwickeln, die das KDM4 noch stärker hemmen und damit das Potential zu einem Therapeutikum besitzen.“

Die Arbeit ist erschienen in ChemMedChem (2019):
“Structure-based screening of tetrazolylhydrazide inhibitors vs. KDM4 histone demethylases”, Piotr H. Małecki, Nicole Rüger, Martin Roatsch, Oxana Krylova, Andreas Link, Manfred Jung, Udo Heinemann, Manfred S. Weiss
DOI: 10.1002/cmdc.201900441

arö


Das könnte Sie auch interessieren

  • Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Science Highlight
    17.07.2024
    Neue Option, um Eigenschaften von Seltenerd-Elementen zu kontrollieren
    Die besonderen Eigenschaften von magnetischen Materialien aus der Gruppe der Seltenen Erden gehen auf Elektronen in der 4f-Schale zurück. Bislang galten die magnetischen Eigenschaften der 4f-Elektronen als kaum kontrollierbar. Nun hat ein Team von HZB, der Freien Universität Berlin und weiteren Einrichtungen erstmals gezeigt, dass durch Laserpulse 4f-Elektronen beeinflusst – und damit deren magnetische Eigenschaften verändert werden können. Die Entdeckung, die durch Experimente am EuXFEL und FLASH gelang, weist einen neuen Weg zu Datenspeichern mit Seltenen Erden.
  • BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Science Highlight
    09.07.2024
    BESSY II zeigt, wie sich Feststoffbatterien zersetzen
    Feststoffbatterien können mehr Energie speichern und sind sicherer als Batterien mit flüssigen Elektrolyten. Allerdings halten sie nicht so lange und ihre Kapazität nimmt mit jedem Ladezyklus ab. Doch das muss nicht so bleiben: Forscherinnen und Forscher sind den Ursachen bereits auf der Spur. In der Fachzeitschrift ACS Energy Letters stellt ein Team des HZB und der Justus-Liebig-Universität Gießen eine neue Methode vor, um elektrochemische Reaktionen während des Betriebs einer Feststoffbatterie mit Photoelektronenspektroskopie an BESSY II genau zu verfolgen. Die Ergebnisse helfen, Batteriematerialien und -design zu verbessern.

  • HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Nachricht
    09.07.2024
    HZB-Magazin lichtblick - die neue Ausgabe ist da!
    Auf der Suche nach dem perfekten Katalysator bekommt HZB-Forscher Robert Seidel nun Rückenwind – durch einen hochkarätigen ERC Consolidator Grant. In der Titelgeschichte stellen wir vor, warum die Röntgenquelle BESSY II für sein Vorhaben eine wichtige Rolle spielt.