Cancer research at BESSY II: Binding Mechanisms of Therapeutic Substances Deciphered

The study is displayed on the cover of the journal Chemmedchem.

The study is displayed on the cover of the journal Chemmedchem. © Chemmedchem/VCH Wiley

In tumor cells, the DNA is altered in comparison to normal body cells. How such changes can be prevented or inhibited is an exciting field of research with great relevance for the development of cancer treatments. An interdisciplinary team has now analysed the possible binding mechanisms in certain therapeutic substances from the tetrazole hydrazide group using protein crystallography at BESSY II.

Certain proteins such as human histone demethylases, including the KDM4 protein, play a role in the development of tumour cells. They bind to the DNA and modify it so that the cell can become cancerous. Therapeutic substances that are able to inhibit or even reverse such changes are of particular interest.

Biochemist Prof. Dr. Udo Heinemann from the Max Delbrück Centre in Berlin-Buch is investigating such processes. In cooperation with chemists led by Prof. Dr. Andreas Link from the University of Greifswald and the team led by Dr. Manfred Weiss at the HZB, he has now investigated how and where certain therapeutic substances from the tetrazole hydrazide group dock to these protein molecules and thus inhibit their harmful effect.

KDM4 protein crystals analysed

Link initially produced variations of tetrazole hydrazide substances. For structural analysis, crystals had to be grown from KDM4 proteins - a difficult task that Dr. Piotr Malecki and Manfred Weiss had taken on at the HZB. The KDM4 protein crystals were then soaked in a specific substance before being analyzed with strong X-rays on the MX beamlines of BESSY II. A refined analysis showed not only the three-dimensional architecture of the KDM4 protein, but also exactly where the active substances had docked to the KDM4 molecule.

"This class of substances has not yet been structurally investigated," explains Manfred Weiss.  And Udo Heinemann from the MDC explains: "We will now evaluate where there are opportunities to dock even stronger within the 3D structure of the KDM4. Then we might also be able to develop drugs that inhibit the KDM4 even more and thus have the potential to become a therapeutic."

arö

  • Copy link

You might also be interested in

  • Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    Science Highlight
    09.09.2024
    Green hydrogen: MXenes shows talent as catalyst for oxygen evolution
    The MXene class of materials has many talents. An international team led by HZB chemist Michelle Browne has now demonstrated that MXenes, properly functionalised, are excellent catalysts for the oxygen evolution reaction in electrolytic water splitting. They are more stable and efficient than the best metal oxide catalysts currently available. The team is now extensively characterising these MXene catalysts for water splitting at the Berlin X-ray source BESSY II and Soleil Synchrotron in France.
  • SpinMagIC: 'EPR on a chip' ensures quality of olive oil and beer
    News
    04.09.2024
    SpinMagIC: 'EPR on a chip' ensures quality of olive oil and beer
    The first sign of spoilage in many food products is the formation of free radicals, which reduces the shelf-life and the overall quality of the food. Until now, the detection of these molecules has been very costly for the food companies. Researchers at HZB and the University of Stuttgart have developed a portable, small and inexpensive 'EPR on a chip' sensor that can detect free radicals even at very low concentrations. They are now working to set up a spin-off company, supported by the EXIST research transfer programme of the German Federal Ministry of Economics and Climate Protection. The EPRoC sensor will initially be used in the production of olive oil and beer to ensure the quality of these products.
  • Review on ocular particle therapy (OPT) by international experts
    Science Highlight
    03.09.2024
    Review on ocular particle therapy (OPT) by international experts
    A team of leading experts in medical physics, physics and radiotherapy, including HZB physicist Prof. Andrea Denker and Charité medical physicist Dr Jens Heufelder, has published a review article on ocular particle therapy. The article appeared in the Red Journal, one of the most prestigious journals in the field. It outlines the special features of this form of eye therapy, explains the state of the art and current research priorities, provides recommendations for the delivery of radiotherapy and gives an outlook on future developments.