Cancer research at BESSY II: Binding Mechanisms of Therapeutic Substances Deciphered

The study is displayed on the cover of the journal Chemmedchem.

The study is displayed on the cover of the journal Chemmedchem. © Chemmedchem/VCH Wiley

In tumor cells, the DNA is altered in comparison to normal body cells. How such changes can be prevented or inhibited is an exciting field of research with great relevance for the development of cancer treatments. An interdisciplinary team has now analysed the possible binding mechanisms in certain therapeutic substances from the tetrazole hydrazide group using protein crystallography at BESSY II.

Certain proteins such as human histone demethylases, including the KDM4 protein, play a role in the development of tumour cells. They bind to the DNA and modify it so that the cell can become cancerous. Therapeutic substances that are able to inhibit or even reverse such changes are of particular interest.

Biochemist Prof. Dr. Udo Heinemann from the Max Delbrück Centre in Berlin-Buch is investigating such processes. In cooperation with chemists led by Prof. Dr. Andreas Link from the University of Greifswald and the team led by Dr. Manfred Weiss at the HZB, he has now investigated how and where certain therapeutic substances from the tetrazole hydrazide group dock to these protein molecules and thus inhibit their harmful effect.

KDM4 protein crystals analysed

Link initially produced variations of tetrazole hydrazide substances. For structural analysis, crystals had to be grown from KDM4 proteins - a difficult task that Dr. Piotr Malecki and Manfred Weiss had taken on at the HZB. The KDM4 protein crystals were then soaked in a specific substance before being analyzed with strong X-rays on the MX beamlines of BESSY II. A refined analysis showed not only the three-dimensional architecture of the KDM4 protein, but also exactly where the active substances had docked to the KDM4 molecule.

"This class of substances has not yet been structurally investigated," explains Manfred Weiss.  And Udo Heinemann from the MDC explains: "We will now evaluate where there are opportunities to dock even stronger within the 3D structure of the KDM4. Then we might also be able to develop drugs that inhibit the KDM4 even more and thus have the potential to become a therapeutic."

arö

You might also be interested in

  • HZB physicist appointed to Gangneung-Wonju National University, South Korea
    News
    25.01.2023
    HZB physicist appointed to Gangneung-Wonju National University, South Korea
    Since 2016, accelerator physicist Ji-Gwang Hwang has been working at HZB in the department of storage rings and beam physics. He has made important contributions to beam diagnostics in several projects at HZB. He is now returning to his home country, South Korea, having accepted a professorship in physics at Gangneung-Wonju National University.
  • Scientists Develop New Technique to Image Fluctuations in Materials
    Science Highlight
    18.01.2023
    Scientists Develop New Technique to Image Fluctuations in Materials
    A team of scientists, led by researchers from the Max Born Institute in Berlin and Helmholtz-Zentrum Berlin in Germany and from Brookhaven National Laboratory and the Massachusetts Institute of Technology in the United States has developed a revolutionary new method for capturing high-resolution images of fluctuations in materials at the nanoscale using powerful X-ray sources. The technique, which they call Coherent Correlation Imaging (CCI), allows for the creation of sharp, detailed movies without damaging the sample by excessive radiation. By using an algorithm to detect patterns in underexposed images, CCI opens paths to previously inaccessible information. The team demonstrated CCI on samples made of thin magnetic layers, and their results have been published in Nature.
  • Recommended reading: Bunsen magazine with focus on molecular water research
    News
    13.01.2023
    Recommended reading: Bunsen magazine with focus on molecular water research
    Water not only has some well-known anomalies, but is still full of surprises. The first issue 2023 of the Bunsen Magazine is dedicated to molecular water research, from the ocean to processes in electrolysis. The issue presents contributions from researchers cooperating within the framework of a European research initiative in the "Centre for Molecular Water Science" (CMWS). A team at HZB presents results from the synchrotron spectroscopy of water. Modern X-ray sources can be used to study molecular and electronic processes in water in detail.