Nutzerforschung an BESSY II: Einblick in das Auge der Pflanzen

Innerhalb der 3D-Struktur eines Phytochrom-Moleküls zeigt sich ein Bilin-Pigment, das das Photon aufnimmt und sich dadurch verdreht, was ein Signal auslöst.

Innerhalb der 3D-Struktur eines Phytochrom-Moleküls zeigt sich ein Bilin-Pigment, das das Photon aufnimmt und sich dadurch verdreht, was ein Signal auslöst. © Jon Hughes

Pflanzen nutzen Licht nicht nur für die Photosynthese. Die Pflanzenzelle hat zwar keine Augen, kann aber dennoch Licht wahrnehmen und damit ihr Umfeld. Dabei spielen Phytochrome, bestimmte türkisfarbige Proteine, die zentrale Rolle. Wie genau sie funktionieren, ist noch unklar. Nun konnte das Team um den Pflanzenphysiologen Jon Hughes (Justus-Liebig-Universität Gießen) an BESSY II die dreidimensionale Architektur von verschiedenen pflanzlichen Phytochrom-Molekülen entschlüsseln. Dabei zeigt sich, wie Licht die Struktur des Phytochroms verändert, so dass die Zelle das Lichtsignal weiterleitet, um die Entwicklung der Pflanze entsprechend zu steuern.

Pflanzen nutzen Licht nicht ausschließlich für die Photosynthese. So besitzen alle Pflanzen Phytochrome – spezielle Moleküle, die den Pflanzen eine Art von Sehvermögen vermitteln und damit die Biochemie der Zelle und die Entwicklung der Pflanze steuern können. Inzwischen weiß man, dass Phytochrome fast ein Viertel des Pflanzengenoms regulieren. Unklar war bislang jedoch, wie Phytochrome genau funktionieren: Wie wird das Licht aufgenommen? Was passiert danach im Molekül, wie wird das Lichtsignal weitergegeben?

Die Arbeitsgruppe von Prof. Jon Hughes am Institut für Pflanzenphysiologie der Justus-Liebig-Universität Gießen (JLU) hat nun gemeinsam mit einem Team in Berlin einen großen Schritt gemacht, um dies zu verstehen. Ihre Ergebnisse wurden in der Fachzeitschrift „Nature Plants“ veröffentlicht.

Phytochrome: Die "Augen" der Pflanzen

Phytochrome sind türkisfarbige Proteine, die in der Lage sind, Rot- und Infrarotlicht aufzunehmen. Obwohl Pflanzen keine Bilder ihrer Umwelt erstellen können, sind sie mit ihren Phytochromen dennoch fähig, äußerst schwaches Licht wahrzunehmen, sogar Farben zu unterscheiden. Sie erkennen somit Blätter in ihrer Nachbarschaft und können auf Bedrohung von Konkurrenten reagieren.

Architektur der Phytochrome an den MX-Beamlines von BESSY II entschlüsselt

Den Teams aus Gießen und Berlin ist es jetzt gelungen, die dreidimensionalen Strukturen von verschiedenen pflanzlichen Phytochrom-Molekülen zu entziffern. Darin sichtbar ist das Bilin-Pigment, womit das Photon – also Licht – aufgenommen wird, auch die chemischen Verbindungen zwischen dem Bilin und dem Protein sind erkennbar. Ein Teil des Bilin-Pigments dreht, wenn es durch Lichtenergie angeregt wird. Dies ändert die Wechselwirkung mit dem Protein, sodass ein Teil seiner Struktur auseinandergerissen und neu gebildet wird. Diese Änderungen wiederum schalten die Signalweiterleitung ein.
 
Die Phytochromstrukturen wurden mit Hilfe von röntgenkristallographischen Messungen am BESSY II-Synchrotron in Berlin erstellt. Die Gießener konnten verschiedene Phytochrom-Moleküle dazu bringen, dass sie in kleinen Tröpfchen mikroskopische, saphir-ähnliche Kristalle bilden. Bestrahlt man diese Kristalle mit hochintensivem Röntgenlicht, wie es am BESSY II erzeugt wird, erhält man sogenannte Diffraktionsmuster woraus die 3D-Strukturen errechnet und mit Hilfe weiterer Informationen Einzelheiten der molekularen Funktionsweise aufgeklärt werden konnten.

Prof. Hughes bedankt sich herzlich bei den beteiligten Wissenschaftlerinnen und Wissenschaftlern in Gießen und Berlin. „Mit unserer Grundlagenforschung wollen wir herausfinden, wie Phytochrome funktionieren. Dabei sind wir nun einen großen Schritt weitergekommen, aber es gibt noch eine Menge zu tun“, so Hughes. „Schon heute können wir jedoch mit gentechnischen Methoden das Phytochromsystem von Nutzpflanzen so verändern, dass die Pflanzen besser wachsen und bessere Ernten erzielt werden können.“

Die Arbeit wurde von der Deutschen Forschungsgemeinschaft (DFG) über den von der FU Berlin koordinierten DFG-Sonderforschungsbereich SFB 1078 „Protonation Dynamics in Protein Function“ finanziert, an dem die Arbeitsgruppe Hughes beteiligt ist.

Langtext aus der Presseinfo der Justus-Liebig-Universität Gießen

arö/Uni Gießen

  • Link kopieren

Das könnte Sie auch interessieren

  • Faszinierendes Fundstück wird zu wertvoller Wissensquelle
    Nachricht
    12.02.2026
    Faszinierendes Fundstück wird zu wertvoller Wissensquelle
    Das Bayerische Landesamt für Denkmalpflege (BLfD) hat ein besonderes Fundstück aus der mittleren Bronzezeit nach Berlin geschickt, um es mit modernsten Methoden zerstörungsfrei zu untersuchen: Es handelt sich um ein mehr als 3400 Jahre altes Bronzeschwert, das 2023 im schwäbischen Nördlingen bei archäologischen Grabungen zutage trat. Die Expertinnen und Experten konnten herausfinden, wie Griff und Klinge miteinander verbunden sind und wie die seltenen und gut erhaltenen Verzierungen am Knauf angefertigt wurden – und sich so den Handwerkstechniken im Süddeutschland der Bronzezeit annähern. Zum Einsatz kamen eine 3D-Computertomographie und Röntgendiffraktion zur Eigenspannungsanalyse am Helmholtz-Zentrum Berlin (HZB) sowie die Röntgenfluoreszenz-Spektroskopie bei einem von der Bundesanstalt für Materialforschung und -prüfung (BAM) betreuten Strahlrohr an BESSY II.
  • Topologische Überraschungen beim Element Kobalt
    Science Highlight
    11.02.2026
    Topologische Überraschungen beim Element Kobalt
    Das Element Kobalt gilt als typischer Ferromagnet ohne weitere Geheimnisse. Ein internationales Team unter der Leitung von Dr. Jaime Sánchez-Barriga (HZB) hat nun jedoch komplexe topologische Merkmale in der elektronischen Struktur von Kobalt entdeckt. Spin-aufgelöste Messungen der Bandstruktur (Spin-ARPES) an BESSY II zeigten verschränkte Energiebänder, die sich selbst bei Raumtemperatur entlang ausgedehnter Pfade in bestimmten kristallographischen Richtungen kreuzen. Dadurch kann Kobalt als hochgradig abstimmbare und unerwartet reichhaltige topologische Plattform verstanden werden. Dies eröffnet Perspektiven, um magnetische topologische Zustände in Kobalt für künftige Informationstechnologien zu nutzen.
  • MXene als Energiespeicher: Vielseitiger als gedacht
    Science Highlight
    03.02.2026
    MXene als Energiespeicher: Vielseitiger als gedacht
    MXene-Materialien könnten sich für eine neue Technologie eignen, um elektrische Ladungen zu speichern. Die Ladungsspeicherung war jedoch bislang in MXenen nicht vollständig verstanden. Ein Team am HZB hat erstmals einzelne MXene-Flocken untersucht, um diese Prozesse im Detail aufzuklären. Mit dem in situ-Röntgenmikroskop „MYSTIIC” an BESSY II gelang es ihnen, die chemischen Zustände von Titanatomen auf den Oberflächen der MXene-Flocken zu kartieren. Die Ergebnisse zeigen, dass es zwei unterschiedliche Redox-Reaktionen gibt, die vom jeweils verwendeten Elektrolyten abhängen. Die Studie schafft eine Grundlage für die Optimierung von MXene-Materialien als pseudokapazitive Energiespeicher.