User research at BESSY II: Insights into the visual perception of plants

Inside the 3D-structure of a phytochrome a bilin pigment absorbs the photon and rotates, which triggers a signal.

Inside the 3D-structure of a phytochrome a bilin pigment absorbs the photon and rotates, which triggers a signal. © Jon Hughes

Plants use light not only for photosynthesis. Although the plant cell does not have eyes, it can still perceive light and thus its environment. Phytochromes, certain turquoise proteins, play the central role in this process. How exactly they function is still unclear. Now a team led by plant physiologist Jon Hughes (Justus Liebig University Gießen) has been able to decipher the three-dimensional architecture of various plant phytochrome molecules at BESSY II. Their results demonstrate how light alters the structure of the phytochrome so that the cell transmits a signal to control the development of the plant accordingly.

Plants use light to live, via a process called photosynthesis. Yet, they do use light also by so called phytochromes - special molecules that give plants a kind of sight and can thus control the biochemistry of the cell and the development of the plant. It is now known that phytochromes regulate almost a quarter of the plant genome.

However, it was unclear how phytochromes function exactly: How is the light absorbed? What happens in the molecule afterwards, how is the light signal transmitted?

Prof. Jon Hughes' research group at the Institute of Plant Physiology at the Justus Liebig University Gießen (JLU) has now taken a big step towards understanding this, together with scientists at HZB in Berlin. Their results have been published in the scientific journal "Nature Plants".

Phytochromes: the "eyes" of plants

Phytochromes are turquoise coloured proteins that are able to absorb red and infrared light. Although plants cannot create images of their environment, their phytochromes enable them to perceive extremely weak light and even distinguish colours. They can therefore recognise leaves in their neighbourhood and can react to threats from competitors.

3D-architecture of phytochromes deciphered

The teams from Gießen and Berlin have now succeeded in deciphering the three-dimensional structures of various plant phytochrome molecules. They can see the bilin pigment with which the photon - i.e. light - is absorbed. The chemical bonds between the bilin and the protein can also be identified. Part of the bilin pigment rotates when excited by light energy. This changes the interaction with the protein, so that part of its structure is torn apart and re-formed. These changes, in turn, switch on the signal transmission.

MX-Beamlines at BESSY II
 
The phytochrome structures were created using X-ray crystallographic measurements at the BESSY II synchrotron in Berlin. The researchers from Gießen were able to cause various phytochrome molecules to form microscopic, sapphire-like crystals in small droplets. If these crystals are irradiated with high-intensity X-ray light, as produced at BESSY II, so-called diffraction patterns are obtained from which the 3D structures can be calculated and, with the help of further information, details of the molecular function can be elucidated.

Prof. Hughes thanks the participating scientists in Gießen and Berlin. "With our basic research we want to find out how phytochromes function. We have now taken a big step forward, but there is still a lot to do," said Hughes. "However, we are already able to use genetic engineering methods to modify the phytochrome system of crops in such a way that the plants grow better and better harvests can be achieved.

The work was funded by the German Research Foundation (DFG) through the DFG Collaborative Research Centre SFB 1078 "Protonation Dynamics in Protein Function", which is coordinated by the FU Berlin and in which Hughes' research group is involved.

arö/Uni Gießen

  • Copy link

You might also be interested in

  • The future of corals – what X-rays can tell us
    Interview
    12.11.2025
    The future of corals – what X-rays can tell us
    This summer, it was all over the media. Driven by the climate crisis, the oceans have now also passed a critical point, the absorption of CO2 is making the oceans increasingly acidic. The shells of certain sea snails are already showing the first signs of damage. But also the skeleton structures of coral reefs are deteriorating in more acidic conditions. This is especially concerning given that corals are already suffering from marine heatwaves and pollution, which are leading to bleaching and finally to the death of entire reefs worldwide. But how exactly does ocean acidification affect reef structures?

    Prof. Dr. Tali Mass, a marine biologist from the University of Haifa, Israel, is an expert on stony corals. Together with Prof. Dr. Paul Zaslansky, X-ray imaging expert from Charité Berlin, she investigated at BESSY II the skeleton formation in baby corals, raised under different pH conditions. Antonia Rötger spoke online with the two experts about the results of their recent study and the future of coral reefs.

  • Energy of charge carrier pairs in cuprate compounds
    Science Highlight
    05.11.2025
    Energy of charge carrier pairs in cuprate compounds
    High-temperature superconductivity is still not fully understood. Now, an international research team at BESSY II has measured the energy of charge carrier pairs in undoped La₂CuO₄. Their findings revealed that the interaction energies within the potentially superconducting copper oxide layers are significantly lower than those in the insulating lanthanum oxide layers. These results contribute to a better understanding of high-temperature superconductivity and could also be relevant for research into other functional materials.
  • Electrocatalysis with dual functionality – an overview
    Science Highlight
    31.10.2025
    Electrocatalysis with dual functionality – an overview
    Hybrid electrocatalysts can produce green hydrogen, for example, and valuable organic compounds simultaneously. This promises economically viable applications. However, the complex catalytic reactions involved in producing organic compounds are not yet fully understood. Modern X-ray methods at synchrotron sources such as BESSY II, enable catalyst materials and the reactions occurring on their surfaces to be analysed in real time, in situ and under real operating conditions. This provides insights that can be used for targeted optimisation. A team has now published an overview of the current state of knowledge in Nature Reviews Chemistry.