New charging points for electric cars installed in Adlershof

© HZB/C. Hanke (alle Fotos)

On 14 May 2020, two charging points for electric cars were installed near the BESSY II main building. But not only the hybrid company car fleet is to be charged here. Soon, employees will also have the opportunity to charge their private cars at one of the charging points.

"I am very pleased that we were able to remove the legal obstacles and that the first pillars are now in place at HZB. Two charging points will also be installed at the Wannsee location in a few weeks," says energy manager Carina Hanke from the FM-T department. This should also promote the electromobility of employees* who commute to work by car - a trend that will certainly continue in the coming years. One charging point with two charging points each is reserved for the HZB company car fleet, the other charging point will be available to employees.

The "fuel" will come from the green electricity that HZB obtains from its electricity supplier. Billing and payment are conveniently carried out with your own smartphone via an app. The amount of the fee due for this is currently being determined. We will inform you as soon as the charging points are also available for private vehicles.

(sz)

  • Copy link

You might also be interested in

  • MXene for energy storage: More versatile than expected
    Science Highlight
    03.02.2026
    MXene for energy storage: More versatile than expected
    MXene materials are promising candidates for a new energy storage technology. However, the processes by which the charge storage takes place were not yet fully understood. A team at HZB has examined, for the first time, individual MXene flakes to explore these processes in detail. Using the in situ Scanning transmission X-ray microscope 'MYSTIIC' at BESSY II, the scientists mapped the chemical states of Titanium atoms on the MXene flake surfaces. The results revealed two distinct redox reactions, depending on the electrolyte. This lays the groundwork for understanding charge transfer processes at the nanoscale and provides a basis for future research aimed at optimising pseudocapacitive energy storage devices.
  • Compact electron accelerator for treating PFAS-contaminated water
    Science Highlight
    19.01.2026
    Compact electron accelerator for treating PFAS-contaminated water
    So-called forever chemicals or PFAS compounds are a growing environmental problem. An innovative approach to treating PFAS-contaminated water and soil now comes from accelerator physics: high-energy electrons can break down PFAS molecules into harmless components through a process called radiolysis. A recent study published in PLOS One shows that an accelerator developed at HZB, based on a SRF photoinjector, can provide the necessary electron beam.
  • Bright prospects for tin perovskite solar cells
    Science Highlight
    03.12.2025
    Bright prospects for tin perovskite solar cells
    Perovskite solar cells are widely regarded as the next generation photovoltaic technology. However, they are not yet stable enough in the long term for widespread commercial use. One reason for this is migrating ions, which cause degradation of the semiconducting material over time. A team from HZB and the University of Potsdam has now investigated the ion density in four different, widely used perovskite compounds and discovered significant differences. Tin perovskite semiconductors produced with an alternative solvent had a particular low ion density — only one tenth that of lead perovskite semiconductors. This suggests that tin-based perovskites could be used to make solar cells that are not only really environmentally friendly but also very stable.