Nutzerforschung an BESSY II: Bildung eines 2D metastabilen Oxids in reaktiven Umgebungen

Darstellung der beschriebenen, auf AgCu in oxidierenden Umgebungen gebildeten Cu<sub>x</sub>O<sub>y</sub>-Struktur.

Darstellung der beschriebenen, auf AgCu in oxidierenden Umgebungen gebildeten CuxOy-Struktur. © (2020) ACS Publishing

In vielen Anwendungen der Katalyse, bei chemischen Sensoren, Brennstoffzellen und Elektroden spielt das chemische Verhalten von Festkörperoberflächen eine wichtige Rolle. Ein Forscherteam des Max-Planck-Instituts für chemische Energiekonversion hat an der Synchrotronstrahlungsquelle BESSY II nun ein wichtiges Phänomen beschrieben, das auftreten kann, wenn Metalllegierungen reaktiven Umgebungen ausgesetzt werden.  

Befinden sich Metalllegierungen in reaktiven Umgebungen, so können sich 2D metastabile Oxide auf ihren Oberflächen bilden. Solche Oxide weisen chemische und elektronische Eigenschaften auf, die sich von denen ihrer Volumen-Pendants deutlich unterscheiden können. Aufgrund ihrer Metastabilität ist ihre Existenz auch mittels theoretischer Methoden oft schwer vorhersehbar.

In der Publikation stellen die Forscher die Ergebnisse einer ausführlichen Untersuchung eines solchen Oxids vor. Die Untersuchungen wurden mittels der In-situ-Photonelektronenspektroskopie an der ISISS Beamline und der UE49-PGM Beamline an BESSY II durchgeführt. Damit bestätigen die Forscher die Existenz von 2D metastabilen Oxiden, die zuvor mit theoretischen Berechnungen vorausgesagt wurde. Die Forschungsergebnisse tragen zum besseren Verständnis der Komplexität von festen Oberflächen in reaktiven Umgebungen bei. Sie sind kürzlich in der Fachzeitschrift ACS Materials & Interfaces veröffentlicht worden.

Die interdisziplinäre Forschungsarbeit geht aus einer Kollaboration zwischen dem Max-Planck-Institut für Chemische Energiekonversion, dem Max-Planck-Institut für Eisenforschung, dem Fritz-Haber-Institut der Max-Planck-Gesellschaft, dem Helmholtz Zentrum Berlin und dem Italian Reaseach Council Insitute of Materials (CNR-IOM) hervor.

(sz/Max-Planck-Institut für chemische Energiekonversion)

  • Link kopieren

Das könnte Sie auch interessieren

  • Sasol und HZB vertiefen Zusammenarbeit mit Fokus auf Digitalisierung
    Nachricht
    08.10.2025
    Sasol und HZB vertiefen Zusammenarbeit mit Fokus auf Digitalisierung
    Sasol Research & Technology und das Helmholtz-Zentrum Berlin (HZB) erweitern ihre Partnerschaft auf den Bereich der Digitalisierung. Dabei bauen sie auf gemeinsamen Anstrengungen im Rahmen des CARE-O-SENE-Projekts und einer Anfang 2025 ins Leben gerufenen Industrial Fellowship auf. Die neue Initiative ist ein Schritt vorwärts bei der Nutzung digitaler Technologien, um Innovation bei Katalysatoren zu beschleunigen und die  wissenschaftliche Zusammenarbeit zu vertiefen.
  • Verleihung des Technologietransfer-Preises 2025
    Nachricht
    07.10.2025
    Verleihung des Technologietransfer-Preises 2025
    Die Verleihung des Technologietransfer-Preises wird am 13. Oktober um 14 Uhr im Hörsaal des BESSY-II-Gebäudes in Adlershof stattfinden.
  • Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Science Highlight
    01.10.2025
    Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Forschende haben erstmals die tatsächlichen Eigenschaften einzelner MXene-Flocken gemessen – einem spannenden neuen Nanomaterial mit Potenzial für bessere Batterien, flexible Elektronik und Geräte für saubere Energie. Mithilfe einer neuartigen lichtbasierten Technik – der spektroskopischen Mikroellipsometrie – haben sie herausgefunden, wie sich MXene auf der Ebene einzelner Flocken verhalten und dabei Veränderungen in der Leitfähigkeit und der optischen Reaktion aufgedeckt, die zuvor bei der Untersuchung gestapelter Schichten verborgen geblieben waren. Dieser Durchbruch liefert grundlegendes Wissen und Werkzeuge für die Entwicklung intelligenterer und effizienterer Technologien auf Basis von MXenen.