HZB intensiviert die Zusammenarbeit mit RI Research Instruments (RI)

Die Teams von RI und HZB Arbeiten Hand in Hand.

Die Teams von RI und HZB Arbeiten Hand in Hand. © RI, HZB

© EU

HZB und RI Research Instruments (RI) haben ihre langjährige Geschäftspartnerschaft durch die Unterzeichnung eines weiteren Vertrags gestärkt - diesmal einer Kooperationsvereinbarung zur Unterstützung des Technologietransfers von Komponenten supraleitender Beschleuniger.

In der Vergangenheit war RI einerseits ein wichtiger Ausrüstungslieferant für HZB, andererseits hat HZB einige Rechte an geistigem Eigentum an RI lizensiert.

Im Rahmen des neuen Vertrags werden Experten des SupraLab am HZB ihre Industriekollegen bei RI in der Entwicklung des ersten industriellen supraleitenden Hochleistungselektronenbeschleunigers unterstützen, der zur Herstellung von Mo-99 verwendet wird, einem Isotop, das mehreren 10 Millionen Patienten jedes Jahr hilft.

Gemeinsam werden sie unter anderem die Fotokathodenherstellung, Laser zur Erzeugung von Elektronenstrahlen und Koppler evaluieren, welche die für die Beschleunigung erforderlichen Hochfrequenzwellen in die supraleitenden Module bringen. Dies ist ein gutes Beispiel dafür, wie Technologie aus der Grundlagenforschung in industrielle Anwendungen gelangt.

Die aktuelle Corona-Krise könnte andere davon abhalten, neue Fernkooperationen aufzunehmen, aber nicht uns. Wir haben die Flexibilität von Videokonferenzen genutzt und bereits viele Meetings abgehalten, bei denen die Erfahrungen des HZB-Teams zu Fortschritten in der Produktentwicklung bei RI geführt hat. In 2021 beginnen die ersten Tests der gemeinsam entwickelten Geräte.

Besonderer Dank gebührt dem Land Berlin und dem Europäischen Fonds für regionale Entwicklung (EFRE) für die Kofinanzierung von SupraLab.

Paul Harten

  • Link kopieren

Das könnte Sie auch interessieren

  • Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Science Highlight
    31.10.2025
    Elektrokatalyse mit doppeltem Nutzen – ein Überblick
    Hybride Elektrokatalysatoren können beispielsweise gleichzeitig grünen Wasserstoff und wertvolle organische Verbindungen produzieren. Dies verspricht wirtschaftlich rentable Anwendungen. Die komplexen katalytischen Reaktionen, die bei der Herstellung organischer Verbindungen ablaufen, sind jedoch noch nicht vollständig verstanden. Moderne Röntgenmethoden an Synchrotronquellen wie BESSY II ermöglichen es, Katalysatormaterialien und die an ihren Oberflächen ablaufenden Reaktionen in Echtzeit, in situ und unter realen Betriebsbedingungen zu analysieren. Dies liefert Erkenntnisse, die für eine gezielte Optimierung genutzt werden können. Ein Team hat nun in Nature Reviews Chemistry einen Überblick über den aktuellen Wissensstand veröffentlicht.
  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in Phosphor nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.