Beschleunigerphysik: HF-Koppler für bERLinPro zeigen sich belastbar

Für die Messkampagne wurden zwei Koppler in horizontaler Testposition unter einem lokalen Reinraumzelt montiert.

Für die Messkampagne wurden zwei Koppler in horizontaler Testposition unter einem lokalen Reinraumzelt montiert. © A. Neumann/HZB

Um die HF-Leistung zu erzeugen, wird  u.a. ein 270 kW Klystron benötigt.

Um die HF-Leistung zu erzeugen, wird  u.a. ein 270 kW Klystron benötigt. © A. Neumann/HZB

In Synchrotronlichtquellen bringt ein Elektronenbeschleuniger Elektronenpakete auf nahezu Lichtgeschwindigkeit, damit diese das besondere „Synchrotronlicht“ abgeben können. Ihre enorme Energie und ihre besondere Form erhalten die Elektronenpakete durch ein stehendes elektromagnetisches Wechselfeld in so genannten Kavitäten. Bei hohen Elektronenströmen, wie sie im Projekt bERLinPro gefordert sind, ist die benötigte Leistung für die stabile Anregung dieses Hochfrequenz-Wechselfelds enorm. Das Einkoppeln dieser hohen Leistung gelingt mit speziellen Antennen, so genannten Kopplern und gilt als große wissenschaftlich-technische Herausforderung. Nun zeigt eine erste Messkampagne mit optimierten Kopplern an bERLinPro, dass sich das Ziel erreichen lässt.

Diese Koppler sollen bei 1,3 GHz die Kavitäten mit 230 kW im Dauerbetrieb versorgen. Zusätzlich muss jedoch die Verbindung zwischen dem Ultrahochvakuum der Kavitäten und der Hochfrequenzübertragungsstecke gewährleistet werden, und zwar sowohl bei Flüssigheliumtemperatur (-269 Grad Celsius oder 4 Kelvin) als auch bei Raumtemperatur. Außerdem sind Reinraumbedingungen einzuhalten, Partikel bis hinunter in den Mikrometerbereich müssen entfernt und abgesaugt werden. Die Leistung soll von jeweils zwei Kopplern in die Kavität übertragen werden, um die individuelle Last zu reduzieren, aber auch um die Stabilität der Elektronentrajektorie im Beschleuniger zu verbessern.

Hochleistungskoppler modifiziert

Nun hat das Team um Axel Neumann vom HZB-Institut SRF (Supraleitende Hochfrequenz-Technologien) zeigen können, dass dieses Ziel realistisch ist. Sie haben dafür das Design der Hochleistungskoppler einer Forschungsgruppe aus dem nationalen Forschungszentrum für Hochenergiephysik in Japan (KEK) modifiziert.

Messkampagne bis 45 kW

Für die Messkampagne wurden zwei der neu entwickelten Koppler als Tandem mit einer Testbox als Kavitätenersatz aufgebaut. Die Messungen starteten mit niedriger Leistung, die nach und nach auf bis zu 45 kW erhöht wurde. Zunächst wurden nur kurze Pulse in längeren Abständen von den Kopplern auf die Kavität übertragen, hier sogar bis zu Leistungen von 100 kW. Dann wurden die Abstände zwischen den Leistungspulsen immer kürzer bis hin zum Dauerbetrieb.

Tolles Ergebnis: Wärme lässt sich abführen

Die Wärmeentwicklung betrug 0,25 Kelvin pro Kilowatt Leistung. Bei einer Endleistung von 120 kW würde sich das Material um etwa 30 Grad Kelvin aufheizen. Dies ist eine gute Nachricht, denn solche Wärmemengen sind technisch abführbar durch die eingeplante Kühlung.

Ausblick: Auch 120 kW sind machbar

„Beim japanischen Originaldesign war die Wärmeentwicklung um den Faktor vier höher als bei unserer adaptierten Form“, erklärt Neumann. „Wir haben zunächst die Messungen auf Leistungen unter 45 kW begrenzt. Erst wenn alle Koppler erfolgreich bei diesen Leistungen getestet sind, kommen die nächsten Schritte. Wir sind nun jedoch sehr optimistisch. Extrapoliert man die Zahlen, dann sollte in der Tat der Koppler 120 kW im Dauerbetrieb problemlos schaffen,“ sagt Prof. Dr. Jens Knobloch, der das HZB-Institut SRF-Wissenschaft und Technologie leitet.

Beitrag zum Helmholtz-Forschungsprogramm Beschleunigerphysik (ARD)

Mit den Arbeiten an Hochfrequenzkavitäten leistet das HZB einen Beitrag zum Forschungsprogramm für Beschleunigerphysik (ARD = „Accelerator Research and Development“) der Helmholtz-Gemeinschaft. Ein zentrales Thema von ARD ist die Entwicklung von supraleitenden Hochfrequenzsystemen für die Beschleunigung von hohen Strömen im Dauerstrichbetrieb. Erst kürzlich wurde ARD von einem internationalen Gremium evaluiert und erhielt in allen Rubriken die Bestnote.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Science Highlight
    08.05.2025
    Grüne Herstellung von Hybridmaterialien als hochempfindliche Röntgendetektoren
    Neue organisch-anorganische Hybridmaterialien auf Basis von Wismut sind hervorragend als Röntgendetektoren geeignet, sie sind deutlich empfindlicher als handelsübliche Röntgendetektoren und langzeitstabil. Darüber hinaus können sie ohne Lösungsmittel durch Kugelmahlen hergestellt werden, einem umweltfreundlichen Syntheseverfahren, das auch in der Industrie genutzt wird. Empfindlichere Detektoren würden die Strahlenbelastung bei Röntgenuntersuchungen erheblich reduzieren.

  • Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Nachricht
    07.05.2025
    Energiespeicher: BAM, HZB und HU Berlin planen gemeinsames Berlin Battery Lab
    Die Bundesanstalt für Materialforschung und -prüfung (BAM), das Helmholtz-Zentrum Berlin (HZB) und die Humboldt-Universität zu Berlin (HU Berlin) haben ein Memorandum of Understanding (MoU) zur Gründung des Berlin Battery Lab unterzeichnet. Das Labor wird die Expertise der drei Institutionen bündeln, um die Entwicklung nachhaltiger Batterietechnologien voranzutreiben. Die gemeinsame Forschungsinfrastruktur soll auch der Industrie für wegweisende Projekte in diesem Bereich offenstehen.
  • BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Science Highlight
    05.05.2025
    BESSY II: Einblick in ultraschnelle Spinprozesse mit Femtoslicing
    Einem internationalen Team ist es an BESSY II erstmals gelungen, einen besonders schnellen Prozess im Inneren eines magnetischen Schichtsystems, eines Spinventils, aufzuklären: An der Femtoslicing-Beamline von BESSY II konnten sie die ultraschnelle Entmagnetisierung durch spinpolarisierte Stromimpulse beobachten. Die Ergebnisse helfen bei der Entwicklung von spintronischen Bauelementen für die schnellere und energieeffizientere Verarbeitung und Speicherung von Information. An der Zusammenarbeit waren Teams der Universität Straßburg, des HZB, der Universität Uppsala sowie weiterer Universitäten beteiligt.