Solar hydrogen: Photoanodes made of α-SnWO4 promise high efficiencies

TEM-Image of a &alpha;-SnWO<sub>4 </sub>film (pink) coated with 20 nm NiO<sub>x </sub>(green). At the interface of &alpha;-SnWO<sub>4</sub> and NiO<sub>x</sub> an additional interfacial layer can be observed.

TEM-Image of a α-SnWO4 film (pink) coated with 20 nm NiOx (green). At the interface of α-SnWO4 and NiOx an additional interfacial layer can be observed. © HZB

Photoanodes made of metal oxides are considered to be a viable solution for the production of hydrogen with sunlight. α-SnWO4 has optimal electronic properties for photoelectrochemical water splitting with sunlight, but corrodes easily. Protective layers of nickel oxide prevent corrosion, but reduce the photovoltage and limit the efficiency. Now a team at HZB has investigated at BESSY II what happens at the interface between the photoanode and the protective layer. Combined with theoretical methods, the measurement data reveal the presence of an oxide layer that impairs the efficiency of the photoanode.


Hydrogen is an important factor in a sustainable energy system. The gas stores energy in chemical form and can be used in many ways: as a fuel, a feedstock for other fuels and chemicals or even to generate electricity in fuel cells. One solution to produce hydrogen in a climate-neutral way is the electrochemical splitting of water with the help of sunlight. This requires photoelectrodes that provide a photovoltage and photocurrent when exposed to light and at the same time do not corrode in water. Metal oxide compounds have promising prerequisites for this. For example, solar water splitting devices using bismuth vanadate (BiVO4) photoelectrodes achieve already today ~8 % solar-to-hydrogen efficiency, which is close to the material’s theoretical maximum of 9 %.

Theoretical limit is 20 % in α-SnWO4

To achieve efficiencies beyond 9 %, new materials with a smaller band gap are needed. The metal oxide α-SnWO4 has a band gap of 1.9 eV, which is perfectly suited for photoelectrochemical water splitting. Theoretically, a photoanode made of this material could convert ~20 % of the irradiated sunlight into chemical energy (stored in the form of hydrogen). Unfortunately, the compound degrades very quickly in an aqueous environment.

Protection against corrosion comes with a price

Thin layers of nickel oxide (NiOx) can protect the α-SnWO4 photoanode from corrosion, but were found to also significantly reduce the photovoltage. To understand why this is the case, a team led by Dr. Fatwa Abdi at the HZB Institute for Solar Fuels has analysed the α-SnWO4/NiOx interface in detail at BESSY II.

Interface explored at BESSY II

"We studied samples with different thicknesses of NiOx with hard X-ray photoelectron spectroscopy (HAXPES) at BESSY II and interpreted the measured data with results from calculations and simulations," says Patrick Schnell, the first author of the study and a PhD student in the HI-SCORE International Research School at HZB. "These results indicate that a thin oxide layer forms at the interface, which reduces the photovoltage," explains Abdi.

Outlook: better protection layers

Overall, the study provides new, fundamental insights into the complex nature of interfaces in metal oxide-based photoelectrodes. "These insights are very helpful for the development of low-cost, scalable metal oxide photoelectrodes," says Abdi. α-SnWO4 is particularly promising in this regard. "We are currently working on an alternative deposition process for NiOx on α-SnWO4 that does not lead to the formation of an interfacial oxide layer, which is likely to be SnO2. If this is successful, we expect that the photoelectrochemical performance of α -SnWO4 will increase significantly."

arö

  • Copy link

You might also be interested in

  • Energy of charge carrier pairs in cuprate compounds
    Science Highlight
    05.11.2025
    Energy of charge carrier pairs in cuprate compounds
    High-temperature superconductivity is still not fully understood. Now, an international research team at BESSY II has measured the energy of charge carrier pairs in undoped La₂CuO₄. Their findings revealed that the interaction energies within the potentially superconducting copper oxide layers are significantly lower than those in the insulating lanthanum oxide layers. These results contribute to a better understanding of high-temperature superconductivity and could also be relevant for research into other functional materials.
  • Electrocatalysis with dual functionality – an overview
    Science Highlight
    31.10.2025
    Electrocatalysis with dual functionality – an overview
    Hybrid electrocatalysts can produce green hydrogen, for example, and valuable organic compounds simultaneously. This promises economically viable applications. However, the complex catalytic reactions involved in producing organic compounds are not yet fully understood. Modern X-ray methods at synchrotron sources such as BESSY II, enable catalyst materials and the reactions occurring on their surfaces to be analysed in real time, in situ and under real operating conditions. This provides insights that can be used for targeted optimisation. A team has now published an overview of the current state of knowledge in Nature Reviews Chemistry.
  • Successful master's degree in IR thermography on solar facades
    News
    22.10.2025
    Successful master's degree in IR thermography on solar facades
    We are delighted to congratulate our student employee Luca Raschke on successfully completing her Master's degree in Renewable Energies at the Hochschule für Technik und Wirtschaft Berlin - and with distinction!