Solarer Wasserstoff: Photoanoden aus α-SnWO4 versprechen hohe Wirkungsgrade

TEM-Aufnahme einer &alpha;-SnWO<sub>4 </sub>D&uuml;nnschicht (pink), die mit 20 nm NiO<sub>x</sub> (gr&uuml;n) beschichtet wurde. An der Grenzfl&auml;che bildet sich eine weitere extrem d&uuml;nne Schicht.

TEM-Aufnahme einer α-SnWO4 Dünnschicht (pink), die mit 20 nm NiOx (grün) beschichtet wurde. An der Grenzfläche bildet sich eine weitere extrem dünne Schicht. © HZB

Photoanoden aus Metalloxiden gelten als praktikable Lösung für die Erzeugung von Wasserstoff mit Sonnenlicht. So besitzt α-SnWO4 optimale elektronische Eigenschaften für die photoelektrochemische Wasserspaltung, korrodiert jedoch rasch. Schutzschichten aus Nickeloxid können die Korrosion verhindern, reduzieren jedoch die Photospannung und damit den Wirkungsgrad. Nun hat ein Team am HZB an der Synchrotronquelle BESSY II untersucht, was an der Grenzfläche zwischen der Photoanode und der Schutzschicht genau passiert. Kombiniert mit theoretischen Methoden deuten die Messdaten darauf hin, dass sich dort eine Oxidschicht bildet, die den Wirkungsgrad der Photoanode beeinträchtigt.

Wasserstoff ist ein wichtiger Faktor in einem nachhaltigen Energiesystem. Das Gas speichert Energie in chemischer Form und kann auf vielfältige Weise genutzt werden: als Kraftstoff, als Ausgangsstoff für andere Brennstoffe und Chemikalien oder auch zur Stromerzeugung in Brennstoffzellen. Wasserstoff lässt sich klimaneutral  durch die elektrochemische Spaltung von Wasser mit Sonnenlicht erzeugen. Die nötige Photospannung und Photostrom liefern geeignete Photoelektroden unter Lichteinfall, die im Wasser stabil bleiben. Einige Metalloxidverbindungen erfüllen diese Vorraussetzungen. So erreichen solare Wasserspalter mit Wismut-Vanadat (BiVO4)-Photoelektroden bereits heute Wirkungsgrade (Solar-to-Hydrogen) von etwa 8 % , was nahe am theoretischen Maximum des Materials liegt (9 %). Um Wirkungsgrade jenseits der 9 % zu erreichen, werden neue Materialien mit einer kleineren Bandlücke benötigt.

α-SnWO4 : Theoretisch bis 20 % Wirkungsgrad möglich

Das Metalloxid α-SnWO4 hat eine Bandlücke von 1,9 eV, die sich perfekt für die photoelektrochemische Wasserspaltung eignet. Theoretisch könnte eine Photoanode aus diesem Material um die 20 % des eingestrahlten Sonnenlichts in chemische Energie, gespeichert in Form von Wasserstoff, umwandeln. Leider zersetzt sich die Verbindung in wässriger Umgebung sehr schnell.

Schutzschicht reduziert die Photospannung

Dünne Schichten aus Nickeloxid (NiOx) können die α-SnWO4-Photoanode vor Korrosion schützen. Dabei wurde jedoch auch festgestellt, dass sie die Photospannung deutlich reduzieren. Um zu verstehen, warum dies der Fall ist, hat ein Team um Dr. Fatwa Abdi am HZB-Institut für Solare Brennstoffe die α-SnWO4/NiOx-Grenzfläche an BESSY II im Detail analysiert.

HAXPES-Messung an BESSY II

"Wir haben Proben mit unterschiedlichen NiOx-Dicken mit harter Röntgen-Photoelektronenspektroskopie (HAXPES) an BESSY II untersucht und die Messdaten mit Ergebnissen aus Berechnungen und Simulationen interpretiert", sagt Patrick Schnell, Erstautor der Studie und Doktorand in der HI-SCORE International Research School am HZB. "Diese Ergebnisse deuten darauf hin, dass sich an der Grenzfläche eine dünne Oxidschicht bildet, die die Photospannung reduziert", erklärt Dr. Fatwa Abdi.

Ausblick: Schutzschicht ohne Nachteile

Insgesamt liefert die Studie grundlegende neue Erkenntnisse über die komplexe Natur von Grenzflächen in Metalloxid-basierten Photoelektroden. "Diese Einblicke sind sehr hilfreich für die Entwicklung kostengünstiger, skalierbarer Metalloxid-Photoelektroden", sagt Abdi. α-SnWO4 ist in dieser Hinsicht besonders vielversprechend. "Wir arbeiten derzeit an einem alternativen Abscheidungsprozess für NiOx auf α-SnWO4, der nicht zur Bildung einer Grenzflächenoxidschicht führt. Wenn dies gelingt, erwarten wir, dass sich die photoelektrochemische Leistung von α-SnWO4 deutlich erhöhen wird."

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.