Blackbox-Verfahren für superschnelle Ergebnisse

Die elektronische Struktur komplexer Moleküle kann aus RIXS-Daten an BESSY II errechnet werden.

Die elektronische Struktur komplexer Moleküle kann aus RIXS-Daten an BESSY II errechnet werden. © Martin Künsting /HZB

Die elektronische Struktur von komplexen Molekülen und ihre chemische Reaktivität können mit Hilfe der Methode der resonanten inelastischen Röntgenstreuung (RIXS) an BESSY II untersucht werden. Allerdings erfordert die Auswertung von RIXS-Daten bisher sehr lange Rechenzeiten. Ein Team an BESSY II hat nun ein neues Simulationsverfahren entwickelt, das diese Auswertung stark beschleunigt. Die Ergebnisse können sogar während des Experiments berechnet werden. Messgäste können das Verfahren wie eine Blackbox nutzen.

Moleküle aus vielen Atomen sind komplexe Gebilde. Die Außenelektronen verteilen sich auf die unterschiedlichen Orbitale, und deren Gestalt entscheidet über das chemische Verhalten und die Reaktivität des Moleküls. Experimentell lassen sich Konfiguration und Besetzung dieser Orbitale durchaus ermitteln. An Synchrotronquellen mit hochbrillanter Röntgenstrahlung wie BESSY II steht dafür eine Methode zur Verfügung: Die resonante inelastische Röntgenstreuung (RIXS). Um von den Messdaten jedoch zu Aussagen über die Orbitale zu kommen, sind aufwändige quantenchemische Simulationen notwendig, typische Rechenzeiten für größere Moleküle dauern selbst an Großrechnern Wochen.  

„Bisher fanden diese Berechnungen meist im Anschluss an die Messungen statt“, erklärt der theoretische Chemiker Dr. Vinicius Vaz da Cruz, Postdoc im Team von Prof. Dr. Alexander Föhlisch. Gemeinsam mit dem RIXS-Experten Dr. Sebastian Eckert, ebenfalls Postdoc in Föhlischs Team, haben sie nun ein raffiniertes neues Verfahren entwickelt, das die Auswertung um ein Vielfaches beschleunigt.

Auswertung binnen Minuten

„Mit unserer Methode dauert es ein paar Minuten und wir brauchen dafür keinen Großrechner, es funktioniert auf dem Desktoprechner“, sagt Eckert. Die HZB-Wissenschaftler haben das Verfahren an dem Molekül 2-Thiopyridon, getestet, einem Modellmolekül für Protonentransfer-Prozesse, die in lebenden Zellen und Organismen eine entscheidende Rolle spielen. Die Ergebnisse sind trotz der kurzen Rechenzeit präzise und zielführend.

Simulationen während der Messung möglich

„Dies ist ein gewaltiger Fortschritt“, betont Föhlisch. „So können wir vorab bereits viele Optionen durchspielen und das Molekül sozusagen kennenlernen. Außerdem ist es mit diesem Verfahren auch möglich, weitaus komplexere Moleküle zu simulieren und die experimentell gewonnenen Daten sinnvoll zu interpretieren.“  Experimentalphysiker Eckert fügt an:„ Auch während der Messung können wir jetzt die Simulationen mitlaufen lassen und gleich sehen, wo es eventuell besonders spannend ist, experimentell genauer hinzuschauen.“

Das Verfahren stellt eine Erweiterung der weit verbreiteten, höchst effizienten Methode der zeitabhängigen Dichtefunktionaltheorie dar, welche um ein Vielfaches schneller Ergebnisse liefert, als konventionelle Methoden zur Simulation von RIXS Spektren. „Dies lässt uns die Methode weitestgehend automatisieren“, sagt Vaz da Cruz: „Für den Nutzer lässt sich das Verfahren wie eine Blackbox benutzen.“

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe. 

  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.
  • Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Science Highlight
    05.11.2025
    Energie von Ladungsträgerpaaren in Kuprat-Verbindungen
    Noch immer ist die Hochtemperatursupraleitung nicht vollständig verstanden. Nun hat ein internationales Forschungsteam an BESSY II die Energie von Ladungsträgerpaaren in undotiertem La₂CuO₄ vermessen. Die Messungen zeigten, dass die Wechselwirkungsenergien in den potenziell supraleitenden Kupferoxid-Schichten deutlich geringer sind als in den isolierenden Lanthanoxid-Schichten. Die Ergebnisse tragen zum besseren Verständnis der Hochtemperatur-Supraleitung bei und könnten auch für die Erforschung anderer funktionaler Materialien relevant sein.