HZB beteiligt sich an DFG-Gruppe zu Materialwissenschaften in der Zahnmedizin

Künstliche und natürliche Grenzzonen an einem mit dentalen Biomaterialien restaurierten Zahn sind verschiedenen mechanischen (links: Belastungen durch Druck, Zug und Scherung) und biologischen Einflüssen (rechts: Anhaftung und Eindringen von Bakterien, andere Wechselwirkungen mit biologischen Medien) ausgesetzt.

Künstliche und natürliche Grenzzonen an einem mit dentalen Biomaterialien restaurierten Zahn sind verschiedenen mechanischen (links: Belastungen durch Druck, Zug und Scherung) und biologischen Einflüssen (rechts: Anhaftung und Eindringen von Bakterien, andere Wechselwirkungen mit biologischen Medien) ausgesetzt. © P. Zaslansky/Charité.

Zahnärztliche Füllungen oder Kronen sind großen Belastungen ausgesetzt. Mit Ansätzen aus Materialwissenschaften und Zahnmedizin wollen Forschende an der Charité – Universitätsmedizin Berlin und der Technischen Universität (TU) Berlin nun die eingesetzten Materialien untersuchen und beständiger machen. Die interdisziplinäre Forschungsgruppe „InterDent“, an der auch das Helmholtz-Zentrum Berlin (HZB) und das Max-Planck-Institut für Kolloid- und Grenzflächenforschung (MPI-KG) beteiligt sind, wird von der Deutschen Forschungsgemeinschaft (DFG) mit 2,1 Millionen Euro zunächst für drei Jahre gefördert. 

Mit dem Ziel, verbesserte Werkstoffe für die Zahnmedizin zu schaffen, werden die Wechselwirkungen verschiedener Materialien mit den umgebenden Geweben beleuchtet. In einem Teilprojekt soll die Vorhersage der Alterung harter Zahnbestandteile – der sogenannten Zahnhartsubstanz – in der Nähe von Zahnfüllungen in Abhängigkeit vom verwendeten Füllungsmaterial ermöglicht werden. Dazu werden die mikrostrukturellen und chemischen Eigenschaften des Dentins – also Zahnbeins –, die sich im Zuge der – als Sklerosierung bezeichneten – Verhärtung zunehmend verändern, zerstörungsfrei und mit hoher Empfindlichkeit und Auflösung untersucht. „Auf diese Weise wollen wir ein Modellsystem für die Dentinsklerose schaffen, das uns ein besseres Verständnis der Veränderungen von Struktur und Element-Zusammensetzung ermöglichen soll“, sagt Dr. Ioanna Mantouvalou vom HZB, die das Teilprojekt gemeinsam mit Dr. Paul Zaslansky leitet, dem Sprecher der Forschungsgruppe und Projektleiter am Institut für Zahn-, Mund- und Kieferheilkunde der Charité.

Charité /red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    Interview
    12.11.2025
    Die Zukunft der Korallen – Was Röntgenuntersuchungen zeigen können
    In diesem Sommer war es in allen Medien. Angetrieben durch die Klimakrise haben nun auch die Ozeane einen kritischen Punkt überschritten, sie versauern immer mehr. Meeresschnecken zeigen bereits erste Schäden, aber die zunehmende Versauerung könnte auch die kalkhaltigen Skelettstrukturen von Korallen beeinträchtigen. Dabei leiden Korallen außerdem unter marinen Hitzewellen und Verschmutzung, die weltweit zur Korallenbleiche und zum Absterben ganzer Riffe führen. Wie genau wirkt sich die Versauerung auf die Skelettbildung aus?

    Die Meeresbiologin Prof. Dr. Tali Mass von der Universität Haifa, Israel, ist Expertin für Steinkorallen. Zusammen mit Prof. Dr. Paul Zaslansky, Experte für Röntgenbildgebung an der Charité Berlin, untersuchte sie an BESSY II die Skelettbildung bei Babykorallen, die unter verschiedenen pH-Bedingungen aufgezogen wurden. Antonia Rötger befragte die beiden Experten online zu ihrer aktuellen Studie und der Zukunft der Korallenriffe. 

  • Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Nachricht
    12.11.2025
    Susanne Nies in EU-Beratergruppe zu Green Deal berufen
    Dr. Susanne Nies leitet am HZB das Projekt Green Deal Ukraina, das den Aufbau eines nachhaltigen Energiesystems in der Ukraine unterstützt. Die Energieexpertin wurde nun auch in die wissenschaftliche Beratergruppe der Europäischen Kommission berufen, um im Zusammenhang mit der Netto-Null-Zielsetzung (DG GROW) regulatorische Belastungen aufzuzeigen und dazu zu beraten.
  • Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Science Highlight
    07.11.2025
    Langzeit-Stabilität von Perowskit-Solarzellen deutlich gesteigert
    Perowskit-Solarzellen sind kostengünstig in der Herstellung und liefern viel Leistung pro Fläche. Allerdings sind sie bisher noch nicht stabil genug für den Langzeit-Einsatz. Nun hat ein internationales Team unter der Leitung von Prof. Dr. Antonio Abate durch eine neuartige Beschichtung der Grenzfläche zwischen Perowskitschicht und dem Top-Kontakt die Stabilität drastisch erhöht. Dabei stieg der Wirkungsgrad auf knapp 27 Prozent, was dem aktuellen state-of-the-art entspricht. Dieser hohe Wirkungsgrad nahm auch nach 1.200 Stunden im Dauerbetrieb nicht ab. An der Studie waren Forschungsteams aus China, Italien, der Schweiz und Deutschland beteiligt. Sie wurde in Nature Photonics veröffentlicht.