Instrument an BESSY II zeigt, wie Licht MoS2-Dünnschichten katalytisch aktiviert

</p> <p>Mit einem neuen Instrument an BESSY II lassen sich Molybd&auml;n-Sulfid-D&uuml;nnschichten untersuchen, die als Katalysatoren f&uuml;r die solare Wasserstoffproduktion interessant sind. Ein Lichtpuls l&ouml;st einen Phasen&uuml;bergang von der halbleitenden in die metallische Phase aus und verst&auml;rkt so die katalytische Aktivit&auml;t.</p> <p>

Mit einem neuen Instrument an BESSY II lassen sich Molybdän-Sulfid-Dünnschichten untersuchen, die als Katalysatoren für die solare Wasserstoffproduktion interessant sind. Ein Lichtpuls löst einen Phasenübergang von der halbleitenden in die metallische Phase aus und verstärkt so die katalytische Aktivität.

© Martin Künsting /HZB

Dünnschichten aus Molybdän und Schwefel gehören zu einer Klasse von Materialien, die als (Photo)-Katalysatoren infrage kommen. Solche günstigen Katalysatoren werden gebraucht, um mit Sonnenenergie auch den Brennstoff Wasserstoff zu erzeugen. Allerdings sind sie bislang noch wenig effizient. Ein neues Instrument an BESSY II am Helmholtz-Zentrum Berlin (HZB) zeigt nun, wie ein Lichtpuls die Oberflächeneigenschaften der Dünnschicht verändert und das Material katalytisch aktiviert.

MoS2-Dünnschichten sind aus abwechselnden Lagen von Molybdän-Atomen und Schwefel-Atomen aufgebaut, die sich zu zweidimensionalen Schichten übereinanderlegen. Das Material ist ein Halbleiter. Aber schon ein blauer Lichtpuls mit überraschend geringer Intensität genügt, um die Eigenschaften der Oberfläche zu verändern und sie metallisch zu machen. Dies hat nun ein Team an BESSY II gezeigt.

Preiswerte Katalysatoren

Das Spannende daran: In dieser metallischen Phase sind die MoS2-Schichten auch katalytisch besonders aktiv. Sie lassen sich dann zum Beispiel als Katalysatoren für die Spaltung von Wasser in Wasserstoff und Sauerstoff einsetzen. Damit könnten sie als preiswerte Katalysatoren die Produktion von Wasserstoff ermöglichen – einem Energieträger, dessen Verbrennung kein CO2, sondern nur Wasser produziert.

Neu an BESSY II: SurfaceDynamics@FemtoSpeX

Die Physikerin Dr. Nomi Sorgenfrei und ihr Team haben an BESSY II ein neues Instrument aufgebaut, um die Veränderungen an den Proben durch Bestrahlung mit ultrakurzen, schwachen Lichtpulsen mithilfe von zeitaufgelöster Elektronenspektroskopie für die chemische Analytik (trESCA) exakt zu vermessen. Diese Lichtpulse werden an BESSY II mit Femtoslicing erzeugt und sind daher von geringer Intensität. Das neue Instrument „SurfaceDynamics@FemtoSpeX“ kann auch aus diesen schwachen Lichtpulsen in kurzer Zeit aussagekräftige Messdaten von Elektronenenergien, Oberflächenchemie und zeitlichen Veränderungen gewinnen.

Phasenübergang beobachtet

Die Analyse der experimentellen Daten zeigte, dass der Lichtpuls zu einer vorübergehenden Ladungsakkumulation an der Oberfläche der Probe führt, was den Phasenübergang an der Oberfläche von einem halbleitenden Zustand in einen metallischen Zustand auslöst.

„Dieses Phänomen sollte auch in anderen Vertretern dieser Materialklasse von p-dotierten halbleitenden Dichalkogeniden auftreten, sodass sich daraus Möglichkeiten ergeben, um die Funktionalität und katalytische Aktivität gezielt zu beeinflussen“, erklärt Sorgenfrei.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Science Highlight
    21.10.2025
    BESSY II: Phosphorketten – ein 1D-Material mit 1D elektronischen Eigenschaften
    Erstmals ist es einem Team an BESSY II gelungen, experimentell eindimensionale elektronische Eigenschaften in einem Material nachzuweisen. Die Proben bestanden aus kurzen Ketten aus Phosphoratomen, die sich auf einem Silbersubstrat selbst organisiert in bestimmten Winkeln bilden. Durch eine raffinierte Auswertung gelang es, die Beiträge von unterschiedlich ausgerichteten Ketten voneinander zu trennen und zu zeigen, dass die elektronischen Eigenschaften tatsächlich einen eindimensionalen Charakter besitzen. Berechnungen zeigten darüber hinaus, dass ein spannender Phasenübergang zu erwarten ist. Während das Material aus einzelnen Ketten halbleitend ist, wäre eine sehr dichte Kettenstruktur metallisch.
  • Ein innerer Kompass für Meereslebewesen im Paläozän
    Science Highlight
    20.10.2025
    Ein innerer Kompass für Meereslebewesen im Paläozän
    Vor Jahrmillionen produzierten einige Meeresorganismen mysteriöse Magnetpartikel von ungewöhnlicher Größe, die heute als Fossilien in Sedimenten zu finden sind. Nun ist es einem internationalen Team gelungen, die magnetischen Domänen auf einem dieser „Riesenmagnetfossilien” mit einer raffinierten Methode an der Diamond-Röntgenquelle zu kartieren. Ihre Analyse zeigt, dass diese Partikel es den Organismen ermöglicht haben könnten, winzige Schwankungen sowohl in der Richtung als auch in der Intensität des Erdmagnetfelds wahrzunehmen. Dadurch konnten sie sich verorten und über den Ozean navigieren. Die neue Methode eignet sich auch, um zu testen, ob bestimmte Eisenoxidpartikel in Marsproben tatsächlich biogenen Ursprungs sind.
  • Was vibrierende Moleküle über die Zellbiologie verraten
    Science Highlight
    16.10.2025
    Was vibrierende Moleküle über die Zellbiologie verraten
    Mit Infrarot-Vibrationsspektroskopie an BESSY II lassen sich hochaufgelöste Karten von Molekülen in lebenden Zellen und Zellorganellen in ihrer natürlichen wässrigen Umgebung erstellen, zeigt eine neue Studie von einem Team aus HZB und Humboldt-Universität zu Berlin. Die Nano-IR-Spektroskopie mit SNOM an der IRIS-Beamline eignet sich, um winzige biologische Proben zu untersuchen und Infrarotbilder der Molekülschwingungen mit Nanometer-Auflösung zu erzeugen. Es ist sogar möglich, 3D-Informationen, also Infrarot-Tomogramme, aufzuzeichnen. Um das Verfahren zu testen, hat das Team Fibroblasten auf einer hochtransparenten SiC-Membran gezüchtet und in vivo untersucht. Die Methode ermöglicht neue Einblicke in die Zellbiologie.