Neue Einblicke in die Struktur von organisch-anorganischen Hybrid-Perowskiten

Das Video zeigt die Veränderungen der Kristallstruktur zeigt. Grau: Pb, Braun: Br, Schwarz: C, Blau: N; Weiß: H © HZB

10.00 s

In der Photovoltaik haben organisch-anorganische Hybrid-Perowskite eine rasante Karriere gemacht. Doch viele Fragen zur kristallinen Struktur dieser überraschend komplexen Materialklasse sind ungeklärt. Nun hat ein Team am HZB mit einer vierdimensionalen Modellierung Strukturdaten von Methylammonium-Bleibromid (MAPbBr3) interpretiert und dabei inkommensurable Überstrukturen und Modulationen der vorherrschenden Struktur identifiziert. Die Studie ist im ACS Journal of Physical Chemistry Letters publiziert und wurde von den Herausgebern als Editor’s Choice ausgewählt.

Organisch-anorganische Hybrid-Perowskite werden seit rund zehn Jahren intensiv für den Einsatz in Solarzellen untersucht. Dünnschichten aus solchen Perowskiten sind preiswert und erreichen schon jetzt hohe Wirkungsgrade. Außerdem lassen sie sich perfekt mit gängigen Solarzellmaterialien wie Silizium zu Tandemzellen kombinieren. Anfang 2020 konnte ein HZB-Team mit einer Tandemzelle aus Perowskit und Silizium einen Weltrekordwirkungsgrad von 29,15 % erreichen.

Doch trotz intensivster Forschung ist es bislang auch bei den bekanntesten Perowskit-Verbindungen wie Methylammonium- und Formamidinium-Bleihalogenid nicht gelungen, die Kristallstrukturen mit ihren vielfältigen Modulationen und Überstrukturen in Abhängigkeit von der Temperatur genau aufzuklären.  

Nun hat ein Team am HZB Strukturdaten von Methylammonium-Bleibromid (MAPbBr3) mit einem neuartigen Modell analysiert. Postdoc Dr. Dennis Wiedemann hat dafür ein Modell verwendet, welches zusätzlich zu den drei Raumdimensionen eine vierte Dimension berücksichtigt. Die Strukturdaten wurden bei einer Temperatur von 150 Kelvin an der University of Columbia gemessen.

„Das Problem in diesen hybriden Perowskiten ist die Tatsache, dass sich die verschiedenen Modifikationen energetisch nicht deutlich unterscheiden, so dass bereits kleinere Temperaturdifferenzen ausreichen, um Phasenübergänge anzustoßen“, erläutert Dr. Joachim Breternitz, Ko-Autor der Studie. Die Daten zur Kristallstruktur zeigen daher einen Mittelwert über viele Elementarzellen, sodass Modulationen und Überstrukturen nicht immer erkennbar sind. Das neue Modell erklärt die inkommensurablen Überstrukturen, die bei MAPbBr3 in einem kleinen Temperaturfenster um 150 K beobachtet werden, und die nicht die gleiche Periodizität wie das Kristallgitter besitzen. Diese komplexe Struktur kommt durch Verkippungen und Verschiebungen in der Kristallstruktur zu Stande. „Das neue Modell wird auch genauere Einblicke in die modulierten Strukturen anderer Perowskit-Verbindungen ermöglichen“, sagt Breternitz.

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Faszinierendes Fundstück wird zu wertvoller Wissensquelle
    Nachricht
    12.02.2026
    Faszinierendes Fundstück wird zu wertvoller Wissensquelle
    Das Bayerische Landesamt für Denkmalpflege (BLfD) hat ein besonderes Fundstück aus der mittleren Bronzezeit nach Berlin geschickt, um es mit modernsten Methoden zerstörungsfrei zu untersuchen: Es handelt sich um ein mehr als 3400 Jahre altes Bronzeschwert, das 2023 im schwäbischen Nördlingen bei archäologischen Grabungen zutage trat. Die Expertinnen und Experten konnten herausfinden, wie Griff und Klinge miteinander verbunden sind und wie die seltenen und gut erhaltenen Verzierungen am Knauf angefertigt wurden – und sich so den Handwerkstechniken im Süddeutschland der Bronzezeit annähern. Zum Einsatz kamen eine 3D-Computertomographie und Röntgendiffraktion zur Eigenspannungsanalyse am Helmholtz-Zentrum Berlin (HZB) sowie die Röntgenfluoreszenz-Spektroskopie bei einem von der Bundesanstalt für Materialforschung und -prüfung (BAM) betreuten Strahlrohr an BESSY II.
  • Topologische Überraschungen beim Element Kobalt
    Science Highlight
    11.02.2026
    Topologische Überraschungen beim Element Kobalt
    Das Element Kobalt gilt als typischer Ferromagnet ohne weitere Geheimnisse. Ein internationales Team unter der Leitung von Dr. Jaime Sánchez-Barriga (HZB) hat nun jedoch komplexe topologische Merkmale in der elektronischen Struktur von Kobalt entdeckt. Spin-aufgelöste Messungen der Bandstruktur (Spin-ARPES) an BESSY II zeigten verschränkte Energiebänder, die sich selbst bei Raumtemperatur entlang ausgedehnter Pfade in bestimmten kristallographischen Richtungen kreuzen. Dadurch kann Kobalt als hochgradig abstimmbare und unerwartet reichhaltige topologische Plattform verstanden werden. Dies eröffnet Perspektiven, um magnetische topologische Zustände in Kobalt für künftige Informationstechnologien zu nutzen.
  • MXene als Energiespeicher: Vielseitiger als gedacht
    Science Highlight
    03.02.2026
    MXene als Energiespeicher: Vielseitiger als gedacht
    MXene-Materialien könnten sich für eine neue Technologie eignen, um elektrische Ladungen zu speichern. Die Ladungsspeicherung war jedoch bislang in MXenen nicht vollständig verstanden. Ein Team am HZB hat erstmals einzelne MXene-Flocken untersucht, um diese Prozesse im Detail aufzuklären. Mit dem in situ-Röntgenmikroskop „MYSTIIC” an BESSY II gelang es ihnen, die chemischen Zustände von Titanatomen auf den Oberflächen der MXene-Flocken zu kartieren. Die Ergebnisse zeigen, dass es zwei unterschiedliche Redox-Reaktionen gibt, die vom jeweils verwendeten Elektrolyten abhängen. Die Studie schafft eine Grundlage für die Optimierung von MXene-Materialien als pseudokapazitive Energiespeicher.