Kandidaten für Coronamedikamente an Röntgenlichtquelle von DESY identifiziert

Elektronendichtekarte des antiviral aktivsten Wirkstoffs Calpeptin (gelb), der an die Hauptprotease bindet.

Elektronendichtekarte des antiviral aktivsten Wirkstoffs Calpeptin (gelb), der an die Hauptprotease bindet. © DESY/Sebastian Günther

An der hochbrillanten Röntgenlichtquelle PETRA III von DESY hat ein Team aus über 30 Forschungseinrichtungen mehrere Kandidaten für Wirkstoffe gegen das Coronavirus SARS-CoV-2 identifiziert. Sie binden an ein wichtiges Protein des Virus und könnten damit die Basis für ein Medikament gegen Covid-19 sein. Das MX-Team aus dem HZB hat dabei einen Teil der Messdaten mit speziellen Analyseprogrammen untersucht, um passende Wirkstoffe zu identifizieren. Die Studie erschien jetzt im renommierten Fachjournal Science.

In einem sogenannten Röntgenscreening testeten die Forscherinnen und Forscher unter Federführung von DESY in kurzer Zeit fast 6000 bereits für die Behandlung anderer Krankheiten existierende Wirkstoffe. So konnte das Team insgesamt 37 Stoffe identifizieren, die an die Hauptprotease (Mpro) des SARS-CoV-2-Virus binden. Sieben dieser Stoffe hemmen die Tätigkeit des Proteins und bremsen so die Vermehrung des Virus. Zwei von ihnen tun das so vielversprechend, dass sie zurzeit in präklinischen Studien weiter untersucht werden. Das vermutlich größte Wirkstoffscreening dieser Art brachte zudem eine neue Bindungsstelle an der Hauptprotease des Virus zu Tage, an der Medikamente ankoppeln können.

„Die Wirkstoffe Calpeptin und Pelitinib zeigten die deutlich höchste Antiviralität bei guter Zellverträglichkeit. Unsere Kooperationspartner haben daher bereits präklinische Untersuchungen mit diesen beiden Wirkstoffen begonnen“, erklärt DESY-Forscher Sebastian Günther, Erstautor der Science-Veröffentlichung.

An den Arbeiten sind neben DESY-Wissenschaftlerinnen und -Wissenschaftlern auch Forscherinnen und Forscher der Universitäten Hamburg und Lübeck, des Bernhard-Nocht-Instituts für Tropenmedizin, des Fraunhofer-Instituts für Translationale Medizin und Pharmakologie, des Heinrich-Pette-Instituts, des European XFEL, des Europäischen Laboratoriums für Molekularbiologie EMBL, der Max-Planck-Gesellschaft, des Helmholtz-Zentrums Berlin und weiteren Institutionen beteiligt.

Anmerkung: Dies ist eine gekürzte Fassung des Pressetests, der in voller Länge bei DESY publiziert ist.

DESY/red.

  • Link kopieren

Das könnte Sie auch interessieren

  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.
  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • KlarText-Preis für Hanna Trzesniowski
    Nachricht
    08.09.2025
    KlarText-Preis für Hanna Trzesniowski
    Die Chemikerin ist mit dem renommierten KlarText-Preis für Wissenschaftskommunikation der Klaus Tschira Stiftung ausgezeichnet worden.