Informationstechnologien: Topologische Materialien für die ultraschnelle Spintronik

Schnappsch&uuml;sse der elektronischen Struktur von Antimon mit Zeitaufl&ouml;sung im Femtosekundenbereich. Besonders zu beachten ist die Region oberhalb der Fermi-Energie E<sub>F</sub>.

Schnappschüsse der elektronischen Struktur von Antimon mit Zeitauflösung im Femtosekundenbereich. Besonders zu beachten ist die Region oberhalb der Fermi-Energie EF. © HZB/Nature Communication Physics (2021)

Ein Team um den HZB-Physiker Dr. Jaime Sánchez-Barriga hat neue Einblicke in die ultraschnelle Anregung und Reaktion von Toplogischen Zuständen der Materie  auf Femtosekunden-Laseranregung gewonnen. Mit zeit- und spinaufgelösten Methoden untersuchten die Physiker an BESSY II, wie das komplexe Wechselspiel im Verhalten angeregter Elektronen im Volumen und an der Oberfläche nach optischer Anregung zu einer ungewöhnlichen Spindynamik führt. Die Arbeit ist ein wichtiger Schritt auf dem Weg zu spintronischen Bauelementen auf Basis topologischer Materialien für die ultraschnelle Informationsverarbeitung.

Die Gesetze der Quantenphysik beherrschen den Mikrokosmos. Sie bestimmen zum Beispiel, wie leicht sich Elektronen durch ein Kristallgitter bewegen und ob das Material metallische Eigenschaften hat, ein Halbleiter oder ein Isolator ist. Die Quantenphysik führt in bestimmten Materialien auch zu exotischen Eigenschaften:

In sogenannten topologischen Isolatoren bewegen sich Elektronen in bestimmten Quantenzustände wie masselose Teilchen an der Oberfläche völlig frei, während Elektronen im Materialvolumen nicht beweglich sind. Darüber hinaus sind die Leitungselektronen in der "Haut" des Materials grundsätzlich spinpolarisiert und bilden robuste, metallische Oberflächenzustände, die als Kanäle genutzt werden könnten, um Spinströme auf Femtosekunden-Zeitskalen (1 fs= 10-15 s) zu erzeugen.

Informationen mit Hilfe von Spins übertragen

Diese Eigenschaften von topologischen Materialien eröffnen neue Möglichkeiten für neue Informationstechnologien wie die ultraschnelle Spintronik, für die der Spin der Elektronen auf ihren Oberflächen und nicht die Ladung ausgenutzt wird. Insbesondere die optische Anregung durch Femtosekunden-Laserpulse in diesen Materialien wäre eine interessante Option, um Spin-Informationen verlustfreie und etwa tausendmal schneller (im Vergleich zu modernen elektronischen Bauelementen) zu übertragen.

Allerdings sind noch viele Fragen zu klären, bevor spintronische Bauelemente entwickelt werden können. Zum Beispiel, wie genau die Volumen (Bulk)- und Oberflächenelektronen eines topologischen Materials auf Laserpulse reagieren und wie stark sich ihr kollektives Verhalten auf ultrakurzen Zeitskalen überschneidet.

Komplexe Physik in einem einfachen System

Ein Team um den HZB-Physiker Dr. Jaime Sánchez-Barriga hat nun neue Erkenntnisse über solche Mechanismen veröffentlicht. Das Team, das auch eine Helmholtz-RSF Joint Research Group in Zusammenarbeit mit Kollegen der Lomonosov State University, Moskau, aufgebaut hat, untersuchte Einkristalle aus elementarem Antimon (Sb), von dem man annahm, dass es ein topologisches Material ist. „Es ist eine gute Strategie, interessante Physik in einem einfachen System zu untersuchen, denn dort können wir hoffen, die grundlegenden Prinzipien zu verstehen", erklärt Sánchez-Barriga. „Um die topologischen Eigenschaften dieses Materials experimentell nachzuweisen, mussten wir die elektronische Struktur in einem hoch angeregten Zustand mit Zeit-, Spin-, Energie- und Impulsauflösung analysieren. Auf diese Weise erhielten wir Zugang zu einer ungewöhnlichen Elektronendynamik", ergänzt der Physiker.

Aus dem Gleichgewicht

Ziel war es, zu verstehen, wie schnell angeregte Elektronen im Volumen und an der Oberfläche von Antimon auf den Energieeintrag von außen reagieren, und die Mechanismen zu erforschen, die ihre Reaktion steuern. „Wir konnten ein vollständiges zeitaufgelöstes Bild davon erstellen, wie angeregte Zustände auf ultraschnellen Zeitskalen das Gleichgewicht verlassen und wieder zurückkehren. Die einzigartige Kombination von zeit- und spin-aufgelösten Messungen erlaubte es uns auch, die Spin-Polarisation von angeregten Zuständen weit außerhalb des Gleichgewichts direkt zu untersuchen", sagt Dr. Oliver J. Clark.

Mehr Masse

Die Daten zeigen einen "Knick" in den Energie-Impuls-Kurven der Oberflächenzustände, der als Zunahme der effektiven Elektronenmasse interpretiert werden kann. Diese Massenerhöhung bestimmt das komplexe Wechselspiel im dynamischen Verhalten von Elektronen aus dem Volumen und der Oberfläche nach der ultraschnellen optischen Anregung entscheidend mit, auch in Abhängigkeit von ihrem Spin.

Kontrolle von spinpolarisierten Strömen

"Unsere Forschung zeigt, welche Eigenschaften dieser Materialklasse der Schlüssel sind, um die relevanten Zeitskalen, in denen verlustfreie spinpolarisierte Ströme erzeugt und manipuliert werden können, systematisch zu kontrollieren", erklärt Sánchez-Barriga. Dies sind wichtige Schritte auf dem Weg zu spintronischen Bauelementen, auf Basis topologischer Materialien für die ultraschnelle Informationsverarbeitung.

 

arö

  • Link kopieren

Das könnte Sie auch interessieren

  • Verleihung des Technologietransfer-Preises 2025
    Nachricht
    07.10.2025
    Verleihung des Technologietransfer-Preises 2025
    Die Verleihung des Technologietransfer-Preises wird am 13. Oktober um 14 Uhr im Hörsaal des BESSY-II-Gebäudes in Adlershof stattfinden.
  • Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Science Highlight
    01.10.2025
    Neue Methode wirft Licht auf Nanomaterialien: Wie MXene wirklich funktionieren
    Forschende haben erstmals die tatsächlichen Eigenschaften einzelner MXene-Flocken gemessen – einem spannenden neuen Nanomaterial mit Potenzial für bessere Batterien, flexible Elektronik und Geräte für saubere Energie. Mithilfe einer neuartigen lichtbasierten Technik – der spektroskopischen Mikroellipsometrie – haben sie herausgefunden, wie sich MXene auf der Ebene einzelner Flocken verhalten und dabei Veränderungen in der Leitfähigkeit und der optischen Reaktion aufgedeckt, die zuvor bei der Untersuchung gestapelter Schichten verborgen geblieben waren. Dieser Durchbruch liefert grundlegendes Wissen und Werkzeuge für die Entwicklung intelligenterer und effizienterer Technologien auf Basis von MXenen. 
  • Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Science Highlight
    15.09.2025
    Poröse organische Struktur verbessert Lithium-Schwefel-Batterien
    Ein neu entwickeltes Material kann die Kapazität und Stabilität von Lithium-Schwefel-Batterien deutlich verbessern. Es basiert auf Polymeren, die ein Gerüst mit offenen Poren bilden. In der Fachsprache werden sie radikale kationische kovalente organische Gerüste oder COFs genannt. In den Poren finden katalytisch beschleunigte Reaktionen statt, die Polysulfide einfangen, die ansonsten die Lebensdauer der Batterie verkürzen würden. Einige der experimentellen Analysen wurden an der BAMline an BESSY II durchgeführt. Prof. Yan Lu, HZB, und Prof. Arne Thomas, Technische Universität Berlin, haben diese Arbeit gemeinsam vorangetrieben.