Überblicksbeitrag: Methoden der Röntgenstreuung mit Synchrotronstrahlung

Resonantes R&ouml;ntgenlicht (lila) erzeugt einen rumpfangeregten Zustand am Sauerstoffatom (rot) des H<sub>2</sub>O-Molek&uuml;ls. Dies verursacht ultraschnelle Protonendynamik. Die Potentialfl&auml;che des elektronischen Grundzustands (unten) und die Bindungsdynamik werden durch spektrale Merkmale der resonanten inelastischen R&ouml;ntgenstreuung erfasst (rechts).</p> <p>

Resonantes Röntgenlicht (lila) erzeugt einen rumpfangeregten Zustand am Sauerstoffatom (rot) des H2O-Moleküls. Dies verursacht ultraschnelle Protonendynamik. Die Potentialfläche des elektronischen Grundzustands (unten) und die Bindungsdynamik werden durch spektrale Merkmale der resonanten inelastischen Röntgenstreuung erfasst (rechts).

© Martin Künsting /HZB

Synchrotronlichtquellen liefern brillantes Licht mit dem Fokus auf Röntgenstrahlung und haben unsere Fähigkeiten der Charakterisierung von Materialien enorm erweitert. In den Reviews of Modern Physics gibt ein internationales Team nun einen Überblick über elastische und inelastische Röntgenstreuprozesse, erläutert den theoretischen Unterbau und beleuchtet, welche Einblicke diese Methoden in physikalische, chemische, bio- und energie-relevante Themen eröffnen.

„Mit Röntgenstreuung lassen sich breit gefächerte Fragestellungen untersuchen und lösen: Angefangen mit den Eigenschaften und Anregungen funktionaler Festkörper, über homogene und heterogene chemische Prozesse und Reaktionen, bis hin zum Pfad eines Protons bei der Spaltung von Wasser“, erläutert Prof. Dr. Alexander Föhlisch, der am HZB das Institut Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung leitet.

Der Beitrag gibt einen Überblick über experimentelle und theoretische Ergebnisse auf dem Gebiet der resonanten Streuung von durchstimmbarer weicher und harter Röntgenstrahlung. Dabei liegt der Schwerpunkt auf der resonanten inelastischen Röntgenstreuung (RIXS) und der resonanten Auger-Streuung (RAS). In der Übersicht skizzieren die Autoren die wichtigsten Errungenschaften aus den letzten zwei Jahrzehnten an Synchrotronlichtquellen bis hin zu neuesten Fortschritten bei zeitaufgelösten Studien mit Freie-Elektronen-Röntgenlasern.

arö


Das könnte Sie auch interessieren

  • Befruchtung unter dem Röntgenstrahl
    Science Highlight
    19.03.2024
    Befruchtung unter dem Röntgenstrahl
    Nachdem die Eizelle von einem Spermium befruchtet wurde, zieht sich die Eihülle zusammen und schützt den Embryo, indem sie mechanisch das Eindringen weiterer Spermien verhindert. Diesen neuen Einblick hat nun ein Team des Karolinska Instituts u.a. durch Messungen an den Röntgenlichtquellen BESSY II, DLS und ESRF gewonnen.
  • Neutronenexperiment am BER II deckt neue Spin-Phase in Quantenmaterial auf
    Science Highlight
    18.03.2024
    Neutronenexperiment am BER II deckt neue Spin-Phase in Quantenmaterial auf
    In quantenmagnetischen Materialien unter Magnetfeldern können neue Ordnungszustände entstehen. Nun hat ein internationales Team aus Experimenten an der Berliner Neutronenquelle BER II und am dort aufgebauten Hochfeldmagneten neue Einblicke in diese besonderen Materiezustände gewonnen. Der BER II wurde bis Ende 2019 intensiv für die Forschung genutzt und ist seitdem abgeschaltet. Noch immer werden neue Ergebnisse aus Messdaten am BER II publiziert.
  • Wo Quantencomputer wirklich punkten können
    Science Highlight
    15.03.2024
    Wo Quantencomputer wirklich punkten können
    Das Problem des Handlungsreisenden gilt als Paradebeispiel für kombinatorische Optimierungsprobleme. Nun zeigt ein Berliner Team um den theoretischen Physiker Prof. Dr. Jens Eisert der Freien Universität Berlin, dass eine bestimmte Klasse solcher Probleme tatsächlich durch Quantencomputer besser und sehr viel schneller gelöst werden kann als mit konventionellen Methoden.