Überblicksbeitrag: Methoden der Röntgenstreuung mit Synchrotronstrahlung

Resonantes R&ouml;ntgenlicht (lila) erzeugt einen rumpfangeregten Zustand am Sauerstoffatom (rot) des H<sub>2</sub>O-Molek&uuml;ls. Dies verursacht ultraschnelle Protonendynamik. Die Potentialfl&auml;che des elektronischen Grundzustands (unten) und die Bindungsdynamik werden durch spektrale Merkmale der resonanten inelastischen R&ouml;ntgenstreuung erfasst (rechts).</p> <p>

Resonantes Röntgenlicht (lila) erzeugt einen rumpfangeregten Zustand am Sauerstoffatom (rot) des H2O-Moleküls. Dies verursacht ultraschnelle Protonendynamik. Die Potentialfläche des elektronischen Grundzustands (unten) und die Bindungsdynamik werden durch spektrale Merkmale der resonanten inelastischen Röntgenstreuung erfasst (rechts).

© Martin Künsting /HZB

Synchrotronlichtquellen liefern brillantes Licht mit dem Fokus auf Röntgenstrahlung und haben unsere Fähigkeiten der Charakterisierung von Materialien enorm erweitert. In den Reviews of Modern Physics gibt ein internationales Team nun einen Überblick über elastische und inelastische Röntgenstreuprozesse, erläutert den theoretischen Unterbau und beleuchtet, welche Einblicke diese Methoden in physikalische, chemische, bio- und energie-relevante Themen eröffnen.

„Mit Röntgenstreuung lassen sich breit gefächerte Fragestellungen untersuchen und lösen: Angefangen mit den Eigenschaften und Anregungen funktionaler Festkörper, über homogene und heterogene chemische Prozesse und Reaktionen, bis hin zum Pfad eines Protons bei der Spaltung von Wasser“, erläutert Prof. Dr. Alexander Föhlisch, der am HZB das Institut Methoden und Instrumentierung der Forschung mit Synchrotronstrahlung leitet.

Der Beitrag gibt einen Überblick über experimentelle und theoretische Ergebnisse auf dem Gebiet der resonanten Streuung von durchstimmbarer weicher und harter Röntgenstrahlung. Dabei liegt der Schwerpunkt auf der resonanten inelastischen Röntgenstreuung (RIXS) und der resonanten Auger-Streuung (RAS). In der Übersicht skizzieren die Autoren die wichtigsten Errungenschaften aus den letzten zwei Jahrzehnten an Synchrotronlichtquellen bis hin zu neuesten Fortschritten bei zeitaufgelösten Studien mit Freie-Elektronen-Röntgenlasern.

arö

Das könnte Sie auch interessieren

  • Stabilität von Perowskit-Solarzellen erreicht den nächsten Meilenstein
    Science Highlight
    27.01.2023
    Stabilität von Perowskit-Solarzellen erreicht den nächsten Meilenstein
    Perowskit-Halbleiter versprechen hocheffiziente und preisgünstige Solarzellen. Allerdings reagiert das halborganische Material sehr empfindlich auf Temperaturunterschiede, was im normalen Außeneinsatz rasch zu Ermüdungsschäden führen kann. Gibt man jedoch eine dipolare Polymerverbindung zur Vorläuferlösung des Perowskits hinzu, verbessert sich die Stabilität enorm. Dies zeigt nun ein internationales Team unter der Leitung von Antonio Abate, HZB, im Fachjournal Science. Die so hergestellten Solarzellen erreichen Wirkungsgrade von deutlich über 24 Prozent, die selbst bei dramatischen Temperaturschwankungen zwischen -60 und +80 Grad Celsius über hundert Zyklen kaum sinken. Das entspricht etwa einem Jahr im Außeneinsatz.

  • HZB-Physiker folgt Ruf nach Südkorea
    Nachricht
    25.01.2023
    HZB-Physiker folgt Ruf nach Südkorea
    Seit 2016 hat der Beschleunigerphysiker Ji-Gwang Hwang am HZB in der Abteilung Speicherring- und Strahlphysik geforscht. In mehreren Projekten hat er wichtige Beiträge zur Strahldiagnostik geleistet. Nun kehrt er in seine Heimat Südkorea zurück, als Professor für Physik an der Gangneung-Wonju National University.
  • Neue Mikroskopiemethode liefert Echtzeitvideos aus dem Mikrokosmos
    Science Highlight
    18.01.2023
    Neue Mikroskopiemethode liefert Echtzeitvideos aus dem Mikrokosmos
    Ein Wissenschaftsteam unter Leitung von Forschenden des Max-Born-Instituts in Berlin, des Helmholtz-Zentrums Berlin, des Brookhaven National Laboratory (USA) und des Massachusetts Institute of Technology (USA) hat eine neue Methode entwickelt, um mit starken Röntgenquellen Videos von Fluktuationen in Materialien auf der Nanoskala aufzunehmen. Die Methode ist in der Lage, scharfe, hochauflösende Bilder zu machen, ohne das Material durch zu starke Belichtung zu beeinträchtigen. Dafür entwickelten die Wissenschaftler*innen einen Algorithmus, der in unterbelichteten Aufnahmen Muster erkennen kann. Im Fachjournal Nature beschreiben sie die Methode des Coherent Correlation Imaging (CCI) und stellen Ergebnisse für Proben aus dünnen magnetischen Schichten vor.