Review: X-ray scattering methods with synchrotron radiation

</p> <p>Resonant X-ray excitation (purple) core excites the oxygen atom within a H<sub>2</sub>O molecule. This causes ultrafast proton dynamics. The electronic ground state potential surface (bottom) and the bond dynamics is captured by distinct spectral features in resonant inelastic X-ray scattering (right).</p> <p></p> <p>

Resonant X-ray excitation (purple) core excites the oxygen atom within a H2O molecule. This causes ultrafast proton dynamics. The electronic ground state potential surface (bottom) and the bond dynamics is captured by distinct spectral features in resonant inelastic X-ray scattering (right).

© Martin Künsting /HZB

Synchrotron light sources provide brilliant light with a focus on the X-ray region and have enormously expanded the possibilities for characterising materials. In the Reviews of Modern Physics, an international team now gives an overview of elastic and inelastic X-ray scattering processes, explains the theoretical background and sheds light on what insights these methods provide in physics, chemistry as well as bio- and energy related themes.

"X-ray scattering can be used to investigate and resolve a wide variety of issues from the properties and excitations of fuctional solids, to homogeneous and heterogeneous chemical processes and reactions or even the proton pathway during the splitting of water," explains Prof. Dr. Alexander Föhlisch, who heads the Institute Methods and Instrumentation for Research with Synchrotron Radiation at HZB.

The article gives an overview of experimental and theoretical results in the field of resonant scattering of tunable soft and hard X-rays. The focus is on resonant inelastic X-ray scattering (RIXS) and resonant Auger scattering (RAS). In the review, the authors outline the most important achievements from the last two decades at Synchrotrons up to the latest advances in time-resolved studies with X-ray free-electron lasers.

arö

You might also be interested in

  • Tomography shows high potential of copper sulphide solid-state batteries
    Science Highlight
    28.11.2022
    Tomography shows high potential of copper sulphide solid-state batteries
    Solid-state batteries enable even higher energy densities than lithium-ion batteries with high safety. A team led by Prof. Philipp Adelhelm and Dr. Ingo Manke succeeded in observing a solid-state battery during charging and discharging and creating high-resolution 3D images. This showed that cracking can be effectively reduced through higher pressure.

  • European pilot line for innovative photovoltaic technology based on tandem solar cells
    News
    23.11.2022
    European pilot line for innovative photovoltaic technology based on tandem solar cells
    PEPPERONI, a four-year Research and Innovation project co-funded under Horizon Europe and jointly coordinated by Helmholtz-Zentrum Berlin and Qcells, will support Europe in reaching its renewable energy target of climate neutrality by 2050. The project will help advance perovskite/silicon tandem photovoltaics (PV) technology’s journey towards market introduction and mass manufacturing.
  • Quantum algorithms save time in the calculation of electron dynamics
    Science Highlight
    22.11.2022
    Quantum algorithms save time in the calculation of electron dynamics
    Quantum computers promise significantly shorter computing times for complex problems. But there are still only a few quantum computers worldwide with a limited number of so-called qubits. However, quantum computer algorithms can already run on conventional servers that simulate a quantum computer. A team at HZB has succeeded to calculate the electron orbitals and their dynamic development on the example of a small molecule after a laser pulse excitation. In principle, the method is also suitable for investigating larger molecules that cannot be calculated using conventional methods.