Perowskit-Solarzellen: Was geschieht an SAM-Passivierungsschichten?
Die SAM-Schicht zwischen dem Perowskit-Halbleiter und dem ITO-Kontakt besteht aus einer einzigen Lage aus organischen Molekülen. Messungen von Oberflächenphotospannung und Photolumineszenz zeigen, über welche Mechanismen die SAM-Schicht Verluste reduziert. © HZB
Metall-organische Perowskit-Materialien versprechen kostengünstige und leistungsstarke Solarzellen. Einer Gruppe am HZB ist es nun gelungen, verschiedene Effekte genauer zu unterscheiden, die an einer SAM-Passivierungsschicht auftreten und die Verluste an den Grenzflächen verringern. Ihre Ergebnisse tragen dazu bei, solche funktionalen Zwischenschichten zu optimieren.
Verluste treten in allen Solarzellen auf. Eine Ursache ist die Rekombination von Ladungsträgern an den Grenzflächen. Zwischenschichten an solchen Grenzflächen können diese Verluste durch sogenannte Passivierung verringern. Besonders gut für die Passivierung von Perowskit-Halbleiteroberflächen eignen sich selbstorganisierte Monolagen (SAMs) aus organischen Molekülen mit einem Carbazol-Kern. Das hat ein Team um den HZB-Physiker Prof. Steve Albrecht mit einer Gruppe der Technischen Universität Kaunas in Litauen bereits vor einiger Zeit gezeigt und damit eine Silizium-Perowskit-Tandemsolarzelle mit einem Rekordwirkungsgrad von über 29 Prozent entwickelt.
Nun hat eine Gruppe am HZB erstmals die Ladungsträgerdynamik an der Perowskit/SAM-modifizierten ITO-Grenzfläche genauer analysiert. Aus zeitaufgelösten Messungen der Oberflächenphotospannung konnten sie mit Hilfe eines kinetischen Modells die Dichte von "Elektronenfallen" an der Grenzfläche sowie die Lochtransferraten extrahieren. Ergänzende Informationen lieferte die Messung der zeitaufgelösten Photolumineszenz.
„Wir konnten Unterschiede in der Passivierungsqualität, der Selektivität und den Lochtransferraten in Abhängigkeit von der Struktur des SAMs feststellen“, erklärt Dr. Igal Levine, Postdoc am HZB und Erstautor der Arbeit. „Wir haben gezeigt, dass wir damit eine relativ einfache Technik zur Verfügung haben, um die Ladungsextraktion an vergrabenen Grenzflächen zu quantifizieren.“ Das könnte das Design idealer ladungsselektiver Kontakte künftig erheblich erleichtern.
arö
https://www.helmholtz-berlin.de/pubbin/news_seite?nid=23156;sprache=de
- Link kopieren
-
Batterieforschung: Alterungsprozesse operando sichtbar gemacht
Lithium-Knopfzellen mit Elektroden aus Nickel-Mangan-Kobalt-Oxiden (NMC) sind sehr leistungsfähig. Doch mit der Zeit lässt die Kapazität leider nach. Nun konnte ein Team erstmals mit einem zerstörungsfreien Verfahren beobachten, wie sich die Elementzusammensetzung der einzelnen Schichten in einer Knopfzelle während der Ladezyklen verändert. An der Studie, die nun im Fachjournal Small erschienen ist, waren Teams der Physikalisch-Technischen Bundesanstalt (PTB), der Universität Münster sowie Forschende der Forschungsgruppe SyncLab des HZB und des Applikationslabors BLiX der Technischen Universität Berlin beteiligt. Ein Teil der Messungen fand mit einem Instrument im BLiX-Labor statt, ein weiterer Teil an der Synchrotronquelle BESSY II.
-
Neues Instrument bei BESSY II: Die OÆSE-Endstation in EMIL
An BESSY II steht nun ein neues Instrument zur Untersuchung von Katalysatormaterialien, Batterieelektroden und anderen Energiesystemen zur Verfügung: die Operando Absorption and Emission Spectroscopy on EMIL (OÆSE) Endstation im Energy Materials In-situ Laboratory Berlin (EMIL). Ein Team um Raul Garcia-Diez und Marcus Bär hat die Leistungsfähigkeit des Instruments an elektrochemisch abgeschiedenem Kupfer demonstriert.
-
Grüner Wasserstoff: Käfigstruktur verwandelt sich in effizienten Katalysator
Clathrate zeichnen sich durch eine komplexe Käfigstruktur aus, die auch Platz für Gast-Ionen bietet. Nun hat ein Team erstmals untersucht, wie gut sich Clathrate als Katalysatoren für die elektrolytische Wasserstoffproduktion eignen. Das Ergebnis: Effizienz und Robustheit sind sogar besser als bei den aktuell genutzten Nickel-basierten Katalysatoren. Dafür fanden sie auch eine Begründung. Messungen an BESSY II zeigten, dass sich die Proben während der katalytischen Reaktion strukturell verändern: Aus der dreidimensionalen Käfigstruktur bilden sich ultradünne Nanoblätter, die maximalen Kontakt zu aktiven Katalysezentren ermöglichen. Die Studie ist in „Angewandte Chemie“ publiziert.