Disorder brings out quantum physical talents

The Dirac cone is typical for topological insulators and is practically unchanged on all 6 images (ARPES measurements at BESSY II). The blue arrow additionally shows the valence electrons in the volume. The synchrotron light probes both and can thus distinguish the Dirac cone at the surface (electrically conducting) from the three-dimensional volume (insulating).

The Dirac cone is typical for topological insulators and is practically unchanged on all 6 images (ARPES measurements at BESSY II). The blue arrow additionally shows the valence electrons in the volume. The synchrotron light probes both and can thus distinguish the Dirac cone at the surface (electrically conducting) from the three-dimensional volume (insulating). © HZB

Quantum effects are most noticeable at extremely low temperatures, which limits their usefulness for technical applications. Thin films of MnSb2Te4, however, show new talents due to a small excess of manganese. Apparently, the resulting disorder provides spectacular properties: The material proves to be a topological insulator and is ferromagnetic up to comparatively high temperatures of 50 Kelvin, measurements at BESSY II show.  This makes this class of material suitable for quantum bits, but also for spintronics in general or applications in high-precision metrology.

Quantum effects such as the anomalous quantum Hall effect enable sensors of highest sensitivity, are the basis for spintronic components in future information technologies and also for qubits in quantum computers of the future. However, as a rule, the quantum effects relevant for this only show up clearly enough to make use of them at very low temperatures near absolute zero and in special material systems.

Quantum effects up to 50 K

Now, an international team led by HZB physicist Prof. Dr. Oliver Rader and Prof. Dr. Gunther Springholz, University of Linz, has observed two particularly important physical properties in thin films of MnSb2Te4: Such doped structures are robust topological insulators and also ferromagnetic up to almost 50 Kelvin.  "According to the theoretical considerations published so far, the material should be neither ferromagnetic nor topological," says Rader. "However, we have now experimentally demonstrated exactly these two properties."

Disorder makes the difference

The group combined measurements of spin- and angle-resolved photoemission spectroscopy (ARPES) and magnetic X-ray circular dichroism (XMCD) at BESSY II, examined the surfaces with scanning tunnelling microscopy (STM) and spectroscopy (STS), and carried out further investigations. "We can see that the additional manganese atoms have led to a certain disorder. This explains why the theoretical observation came to a different result - the theory assumed an ideally ordered structure, which is not realised" says Rader.

The properties are extraordinarily robust and occur up to a temperature of just under 50 K, which is three times higher than the best ferromagnetic systems before (see Nature, 2019). This makes this material an interesting candidate for spintronics and even qubits.

arö

You might also be interested in

  • Perowskit/Silizium-Tandemsolarzellen auf dem Weg vom Labor in die Produktion
    Science Highlight
    28.06.2022
    Perowskit/Silizium-Tandemsolarzellen auf dem Weg vom Labor in die Produktion
    KOALA/KOALA+ - Die am Helmholtz Zentrum Berlin (HZB) errichtete Clusteranlage ermöglicht Wafer mit Perowskit/Silizium-Tandemsolarzellen im Vakuum herzustellen; ausreichend groß, um eine industrielle Produktion abzubilden. Diese weltweit einzigartige Anlage trägt dazu bei, neue industrienahe Prozesse, Materialien und Solarzellen zu entwickeln.
  • Atomic displacements in High-Entropy Alloys examined
    Science Highlight
    27.06.2022
    Atomic displacements in High-Entropy Alloys examined
    High-entropy alloys of 3d metals have intriguing properties that are interesting for applications in the energy sector. An international team at BESSY II has now investigated the local order on an atomic scale in a so-called high-entropy Cantor alloy of chromium, manganese, iron, cobalt and nickel. The results from combined spectroscopic studies and statistical simulations expand the understanding of this group of materials.
  • Deputy Prime Minister of Singapore visits HZB
    News
    21.06.2022
    Deputy Prime Minister of Singapore visits HZB
    On Friday, 17 June, a delegation from Singapore visited HZB. Heng Swee Keat, Deputy Prime Minister of Singapore, was accompanied by the Ambassador to Singapore in Berlin, Laurence Bay, as well as representatives from research and industry.