Friedrich-Alexander Universität Erlangen-Nürnberg appoints Olga Kasian

Olga Kasian has accepted a professorship at the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU).

Olga Kasian has accepted a professorship at the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU).

Dr. Olga Kasian is investigating why catalysts for hydrogen production by water electrolysis are limited in efficiency. The chemist has now accepted a professorship at the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU). The W2 professorship is entitled "Materials for Electrochemical Energy Conversion" and is located at the Faculty of Engineering.

Olga Kasian completed her doctorate in 2013 at the State University of Chemical Technology in Dnepropetrovsk, Ukraine, and was awarded as best young scientist of Dnepropetrovsk region in field of chemical technology. After a first postdoctoral stay in Germany, she joined the Max Planck Institute for Iron Research in Düsseldorf as an Alexander von Humboldt Research Fellow in 2015. That year she got the Award of the President of Ukraine for Young Scientists. Since May 2019, she has been leading the Helmholtz Young Investigator Group 'Dynamic Electrocatalytic Interfaces' at HZB and the Helmholtz Institute Erlangen-Nuremberg for Renewable Energies (HI-ERN).

Together with her team, she is investigating how the catalytically active surfaces change under reaction conditions, using a wide range of methods including state of the art spectroscopy techniques available at the EMIL-Lab at the synchrotron radiation source BESSY II.

arö

  • Copy link

You might also be interested in

  • Iridium-free catalysts for acid water electrolysis investigated
    Science Highlight
    13.08.2025
    Iridium-free catalysts for acid water electrolysis investigated
    Hydrogen will play an important role, both as a fuel and as a raw material for industry. However, in order to produce relevant quantities of hydrogen, water electrolysis must become feasible on a multi-gigawatt scale. One bottleneck is the catalysts required, with iridium in particular being an extremely rare element. An international collaboration has therefore investigated iridium-free catalysts for acidic water electrolysis based on the element cobalt. Through investigations with various methods, among them experiments at the LiXEdrom at the BESSY II X-ray source in Berlin, they were able to elucidate processes that take place during water electrolysis in a cobalt-iron-lead oxide material as the anode. The study is published in Nature Energy.
  • Berlin Science Award goes to Philipp Adelhelm
    News
    24.07.2025
    Berlin Science Award goes to Philipp Adelhelm
    Battery researcher Prof. Dr. Philipp Adelhelm has been awarded the 2024 Berlin Science Award. He is a professor at the Institute of Chemistry at Humboldt University in Berlin (HU) and heads a joint research group at HU and the Helmholtz Zentrum Berlin (HZB). The materials scientist and electrochemist is investigating sustainable batteries, which play a key role in the success of the energy transition. He is one of the leading international experts in the field of sodium-ion batteries.
  • Long-term test shows: Efficiency of perovskite cells varies with the season
    Science Highlight
    21.07.2025
    Long-term test shows: Efficiency of perovskite cells varies with the season
    Scientists at HZB run a long-term experiment on the roof of a building at the Adlershof campus. They expose a wide variety of solar cells to the weather conditions, recording their performance over a period of years. These include perovskite solar cells, a new photovoltaic material offering high efficiency and low manufacturing costs. Dr Carolin Ulbrich and Dr Mark Khenkin evaluated four years of data and presented their findings in Advanced Energy Materials. This is the longest series of measurements on perovskite cells in outdoor use to date. The scientists found that standard perovskite solar cells perform very well during the summer months, even over several years, but decline in efficiency during the darker months.