Surface analysis at BESSY II: sharper insights into thin-film systems

</p> <p class="MsoCommentText">The illustration shows how the APECS measurement works on a nickel single crystal with an oxidised surface. An X-ray beam ionises atoms, either in the nickel crystal or on the surface. The excited photoelectrons from the surface and from the crystal have slightly different binding energies. The Auger electrons make it possible to determine the origin of the photoelectrons.&nbsp;</p> <p>

The illustration shows how the APECS measurement works on a nickel single crystal with an oxidised surface. An X-ray beam ionises atoms, either in the nickel crystal or on the surface. The excited photoelectrons from the surface and from the crystal have slightly different binding energies. The Auger electrons make it possible to determine the origin of the photoelectrons. 

© Martin Künsting /HZB

Interfaces in semiconductor components or solar cells play a crucial role for functionality. Nevertheless, until now it has often been difficult to investigate adjacent thin films separately using spectroscopic methods. An HZB team at BESSY II has combined two different spectroscopic methods and used a model system to demonstrate how well they can be distinguished.

Photoelectron spectroscopy (PES) enables the chemical analysis of surfaces and semiconductor layers. In this process, an X-ray pulse (photons) hits the sample and excites electrons to leave the sample. With special detectors, it is then possible to measure the direction and binding energy of these electrons and thus obtain information about electronic structures and the chemical environment of the atoms in the material. However, if the binding energies are close to each other in adjacent layers, then it is hardly possible to distinguish these layers from each other with PES.

 A team at HZB has now shown how precise assignments can nevertheless be achieved: they combined photoelectron spectroscopy with a second spectroscopic method: Auger electron spectroscopy. Here, photoelectrons and Auger electrons are measured simultaneously, which gives the resulting method its name: APECS for Auger electron photoelectron coincidence spectroscopy (APECS). 

A comparison of the binding energies determined in this way then allows conclusions to be drawn about the respective chemical environment and thus enables the finest layers to be distinguished. Using a single-crystal nickel sample, a very good model system for many metals, the team has now been able to show how well this works: The experimental data enabled the physicists to precisely determine the shift in the binding energy of the electrons, depending on whether they came from the thin oxidised surface or from the deeper crystal layers.

"At first, we were sceptical whether it would be possible to really extract a clear distinction from the data. We were excited to see such a distinct effect," says Artur Born, first author of the paper, who is doing his doctorate in Prof. Alexander Föhlisch's team.

arö

  • Copy link

You might also be interested in

  • The future of corals – what X-rays can tell us
    Interview
    12.11.2025
    The future of corals – what X-rays can tell us
    This summer, it was all over the media. Driven by the climate crisis, the oceans have now also passed a critical point, the absorption of CO2 is making the oceans increasingly acidic. The shells of certain sea snails are already showing the first signs of damage. But also the skeleton structures of coral reefs are deteriorating in more acidic conditions. This is especially concerning given that corals are already suffering from marine heatwaves and pollution, which are leading to bleaching and finally to the death of entire reefs worldwide. But how exactly does ocean acidification affect reef structures?

    Prof. Dr. Tali Mass, a marine biologist from the University of Haifa, Israel, is an expert on stony corals. Together with Prof. Dr. Paul Zaslansky, X-ray imaging expert from Charité Berlin, she investigated at BESSY II the skeleton formation in baby corals, raised under different pH conditions. Antonia Rötger spoke online with the two experts about the results of their recent study and the future of coral reefs.

  • Long-term stability for perovskite solar cells: a big step forward
    Science Highlight
    07.11.2025
    Long-term stability for perovskite solar cells: a big step forward
    Perovskite solar cells are inexpensive to produce and generate a high amount of electric power per surface area. However, they are not yet stable enough, losing efficiency more rapidly than the silicon market standard. Now, an international team led by Prof. Dr. Antonio Abate has dramatically increased their stability by applying a novel coating to the interface between the surface of the perovskite and the top contact layer. This has even boosted efficiency to almost 27%, which represents the state-of-the-art. After 1,200 hours of continuous operation under standard illumination, no decrease in efficiency was observed. The study involved research teams from China, Italy, Switzerland and Germany and has been published in Nature Photonics.
  • Energy of charge carrier pairs in cuprate compounds
    Science Highlight
    05.11.2025
    Energy of charge carrier pairs in cuprate compounds
    High-temperature superconductivity is still not fully understood. Now, an international research team at BESSY II has measured the energy of charge carrier pairs in undoped La₂CuO₄. Their findings revealed that the interaction energies within the potentially superconducting copper oxide layers are significantly lower than those in the insulating lanthanum oxide layers. These results contribute to a better understanding of high-temperature superconductivity and could also be relevant for research into other functional materials.