Walter-Schottky-Award for Felix Büttner

Dr. Felix Büttner is leading a Helmholtz Young Investigator group at HZB on topological solitons.

Dr. Felix Büttner is leading a Helmholtz Young Investigator group at HZB on topological solitons. © privat

The Walter Schottky Prize honours outstanding work by young physicists in solid-state research. For 2022, the award goes to HZB physicist Dr Felix Büttner for his groundbreaking achievements in the field of magnetic skyrmions.

"His work has contributed significantly to the understanding of the ultrafast generation and properties of these topological states."

This praise on Büttner's work is published on the website of the German Physical Society (DPG), which awards the Walter Schottky Prize.

The DPG further explains: Magnetic skyrmions are spin textures that behave like quasiparticles and have a non-trivial topology. Felix Büttner has made a decisive contribution to the fundamental understanding of the dynamics of skyrmions, taking their topology into account. He has used time-resolved X-ray holography and scattering experiments on X-ray lasers to elucidate the mechanisms of the generation of skyrmions by short laser pulses and to improve the possibilities for the fast and efficient movement of skyrmions by current pulses in ladder structures.

Felix Büttner studied in Göttingen and received his PhD in 2013 for his work at the interface of magnetism (Mathias Kläui, JGU Mainz) and X-ray physics (Stefan Eisebitt, TU Berlin). After a stint in industry at Daimler AG, he worked as a postdoctoral researcher at the Massachusetts Institute of Technology with G.S.D. Beach in 2015-2020. Since 2020, he has been leading an independent research group at the Helmholtz Zentrum Berlin für Materialien und Energie.

The award is expected to be presented in March 2022 during the DPG Spring Meeting in Regensburg.

DPG/red.

  • Copy link

You might also be interested in

  • Fascinating archaeological find becomes a source of knowledge
    News
    12.02.2026
    Fascinating archaeological find becomes a source of knowledge
    The Bavarian State Office for the Preservation of Historical Monuments (BLfD) has sent a rare artefact from the Middle Bronze Age to Berlin for examination using cutting-edge, non-destructive methods. It is a 3,400-year-old bronze sword, unearthed during archaeological excavations in Nördlingen, Swabia, in 2023. Experts have been able to determine how the hilt and blade are connected, as well as how the rare and well-preserved decorations on the pommel were made. This has provided valuable insight into the craft techniques employed in southern Germany during the Bronze Age. The BLfD used 3D computed tomography and X-ray diffraction to analyse internal stresses at the Helmholtz-Zentrum Berlin (HZB), as well as X-ray fluorescence spectroscopy at a BESSY II beamline supervised by the Bundesanstalt für Materialforschung und -prüfung (BAM).
  • Element cobalt exhibits surprising properties
    Science Highlight
    11.02.2026
    Element cobalt exhibits surprising properties
    The element cobalt is considered a typical ferromagnet with no further secrets. However, an international team led by HZB researcher Dr. Jaime Sánchez-Barriga has now uncovered complex topological features in its electronic structure. Spin-resolved measurements of the band structure (spin-ARPES) at BESSY II revealed entangled energy bands that cross each other along extended paths in specific crystallographic directions, even at room temperature. As a result, cobalt can be considered as a highly tunable and unexpectedly rich topological platform, opening new perspectives for exploiting magnetic topological states in future information technologies.
  • MXene for energy storage: More versatile than expected
    Science Highlight
    03.02.2026
    MXene for energy storage: More versatile than expected
    MXene materials are promising candidates for a new energy storage technology. However, the processes by which the charge storage takes place were not yet fully understood. A team at HZB has examined, for the first time, individual MXene flakes to explore these processes in detail. Using the in situ Scanning transmission X-ray microscope 'MYSTIIC' at BESSY II, the scientists mapped the chemical states of Titanium atoms on the MXene flake surfaces. The results revealed two distinct redox reactions, depending on the electrolyte. This lays the groundwork for understanding charge transfer processes at the nanoscale and provides a basis for future research aimed at optimising pseudocapacitive energy storage devices.