Neuer 12-T-Magnet in der BESSY II Halle stärkt Energie- und Magnetismusforschung

</p> <p>Ersch&ouml;pft, aber gl&uuml;cklich: v.l.n.r. - K. Holldack (HZB), A. Schnegg (MPI CEC M&uuml;lheim, HZB), T. Lohmiller (HZB, HUB), D. Ponwitz (HZB) nach der erfolgreichen Inbetriebnahme des neuen 12T-Magneten (gr&uuml;n).</p> <p>

Erschöpft, aber glücklich: v.l.n.r. - K. Holldack (HZB), A. Schnegg (MPI CEC Mülheim, HZB), T. Lohmiller (HZB, HUB), D. Ponwitz (HZB) nach der erfolgreichen Inbetriebnahme des neuen 12T-Magneten (grün).

Die TeraHertz-Elektronenspinresonanz (THz-EPR) bei BESSY II liefert wichtige Informationen über die elektronische Struktur neuartiger magnetischer Materialien und Katalysatoren. Mitte Januar 2022 haben die Forschenden am betreffenden Strahlrohr einen neuen, supraleitenden 12-T-Magneten in Betrieb genommen, der neue wissenschaftliche Erkenntnisse verspricht.

Die THz-EPR-Endstation bietet durch die Kombination von kohärentem TeraHertz-Licht von BESSY II und hohen Magnetfeldern einzigartige experimentelle Bedingungen. Diese Möglichkeiten werden nun durch den 12-T-Magneten erweitert, der mit Mitteln aus dem BMBF-Netzwerkprojekt "ERP-on-a-Chip" und dem HZB beschafft wurde.

„Wir erwarten durch den neuen Aufbau viele spannende neue wissenschaftliche Arbeiten mit Nutzergruppen und innerhalb unseres gemeinsamen Labors EPR4Energy mit dem Max-Planck-Institut für Chemische Energiekonversion (CEC) in Mülheim. Wir freuen uns sehr über die erfolgreiche Inbetriebnahme des supraleitenden Magneten, der das zurzeit höchste Magnetfeld bei BESSY II liefert", sagt Karsten Holldack, der verantwortliche Wissenschaftler am THz-Strahlrohr.

(red)

  • Link kopieren

Das könnte Sie auch interessieren

  • Wie sich Nanokatalysatoren während der Katalyse verändern
    Science Highlight
    10.09.2025
    Wie sich Nanokatalysatoren während der Katalyse verändern
    Mit der Kombination aus Spektromikroskopie an BESSY II und mikroskopischen Analysen am NanoLab von DESY gelang es einem Team, neue Einblicke in das chemische Verhalten von Nanokatalysatoren während der Katalyse zu gewinnen. Die Nanopartikel bestanden aus einem Platin-Kern mit einer Rhodium-Schale. Diese Konfiguration ermöglicht es, strukturelle Änderungen beispielsweise in Rhodium-Platin-Katalysatoren für die Emissionskontrolle besser zu verstehen. Die Ergebnisse zeigen, dass Rhodium in der Schale unter typischen katalytischen Bedingungen teilweise ins Innere der Nanopartikel diffundieren kann. Dabei verbleibt jedoch der größte Teil an der Oberfläche und oxidiert. Dieser Prozess ist stark von der Oberflächenorientierung der Nanopartikelfacetten abhängig.
  • KlarText-Preis für Hanna Trzesniowski
    Nachricht
    08.09.2025
    KlarText-Preis für Hanna Trzesniowski
    Die Chemikerin ist mit dem renommierten KlarText-Preis für Wissenschaftskommunikation der Klaus Tschira Stiftung ausgezeichnet worden.
  • Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Science Highlight
    08.09.2025
    Metalloxide: Wie Lichtpulse Elektronen in Bewegung setzen
    Metalloxide kommen in der Natur reichlich vor und spielen eine zentrale Rolle in Technologien wie der Photokatalyse und der Photovoltaik. In den meisten Metalloxiden ist jedoch aufgrund der starken Abstoßung zwischen Elektronen benachbarter Metallatome die elektrische Leitfähigkeit sehr gering. Ein Team am HZB hat nun zusammen mit Partnerinstitutionen gezeigt, dass Lichtimpulse diese Abstoßungskräfte vorübergehend schwächen können. Dadurch sinkt die Energie, die für die Elektronenbeweglichkeit erforderlich ist, so dass ein metallähnliches Verhalten entsteht. Diese Entdeckung bietet eine neue Möglichkeit, Materialeigenschaften mit Licht zu manipulieren, und birgt ein hohes Potenzial für effizientere lichtbasierte Bauelemente.