New 12 T magnet on BESSY II’s experimental floor strengthens energy and magnetism research

</p> <p>Exhausted but happy: f.l.t.r. - K. Holldack (HZB), A. Schnegg (MPI CEC M&uuml;lheim, HZB), T. Lohmiller (HZB, HUB), D. Ponwitz (HZB) after the successful commissioning of the new 12T magnet (green).</p> <p>

Exhausted but happy: f.l.t.r. - K. Holldack (HZB), A. Schnegg (MPI CEC Mülheim, HZB), T. Lohmiller (HZB, HUB), D. Ponwitz (HZB) after the successful commissioning of the new 12T magnet (green).

Electron paramagnetic resonance (THz-EPR) at BESSY II provides important information on the electronic structure of novel magnetic materials and catalysts. In mid-January 2022, the researchers brought a new, superconducting 12-T magnet into operation at this end station, which promises new scientific insights.

At the THz-EPR end station, unique experimental conditions are provided through a combination of coherent THz-light from BESSY II and high magnetic fields. These capabilities have now been extended by a new superconducting 12 T magnet, acquired through funding from the BMBF network project “ERP-on-a-Chip” and HZB.

“The extended capabilities of the new setup will allow exciting new science with user groups and within our joint lab EPR4Energy operated together with Max Planck Institute for Chemical Energy Conversion, Mühlheim. We are very pleased about the successful commissioning of the superconducting magnet, which currently delivers the highest magnetic field at BESSY II”, says Karsten Holldack, the responsible beamline scientist.

(red)

  • Copy link

You might also be interested in

  • What vibrating molecules might reveal about cell biology
    Science Highlight
    16.10.2025
    What vibrating molecules might reveal about cell biology
    Infrared vibrational spectroscopy at BESSY II can be used to create high-resolution maps of molecules inside live cells and cell organelles in native aqueous environment, according to a new study by a team from HZB and Humboldt University in Berlin. Nano-IR spectroscopy with s-SNOM at the IRIS beamline is now suitable for examining tiny biological samples in liquid medium in the nanometre range and generating infrared images of molecular vibrations with nanometre resolution. It is even possible to obtain 3D information. To test the method, the team grew fibroblasts on a highly transparent SiC membrane and examined them in vivo. This method will provide new insights into cell biology.
  • Sasol and HZB deepen collaboration with strategic focus on digitalisation
    News
    08.10.2025
    Sasol and HZB deepen collaboration with strategic focus on digitalisation
    Sasol Research & Technology and Helmholtz Zentrum Berlin (HZB) are expanding their partnership into the realm of digitalisation, building on their joint efforts in the CARE-O-SENE project and an Industrial Fellowship launched earlier this year. This new initiative marks a significant step forward in leveraging digital technologies to accelerate catalyst innovation and deepen scientific collaboration.
  • Technology Transfer Prize Ceremony 2025
    News
    07.10.2025
    Technology Transfer Prize Ceremony 2025
    This year’s Technology Transfer Prize Ceremony will take place on October 13 at 2 pm in the Lecture Hall, BESSY II Building, Adlershof.